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Abstract—In this paper, a novel interferometric 3-D imaging 
algorithm for spinning targets is proposed based on narrow-band 
radar. The height information of the scatterer is estimated by the 
phase difference between the same scatterer in two 2-D images 
generated by two antennas at closely-separated elevation angles 
via narrow-band radar imaging algorithms. For imaging of 
rapidly spinning targets, however, spurious peaks appear due to 
azimuth sample deficiency. Furthermore, the compressed sensing 
theory is applied into interferometric 3-D imaging based on joint 
sparsity of two images. The simulation results have proved the 
validity of the proposed algorithm. 

Keywords—Narrow-band radar; spinning targets; three-
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I.  INTRODUCTION  

For radar imaging of spinning targets, such as space debris, 
flying missiles, airscrews of airplane, conventional imaging 
approaches are invalid due to the violation of the rigid body 
assumption. However, spinning targets detection and imaging 
are essential to some special applications, such as missile 
defense, spacecraft safety, targets classification and recognition, 
etc. Recently, many investigators have devoted their work to 
high-resolution radar imaging of spinning targets. In [1]-[3], 
SRDI, SRMF-CLEAN, and SRIF imaging algorithms are 
proposed for 2-D imaging of spinning targets via narrow-band 
radar. Sample deficiency is usually inevitable in practice due 
to low pulse repetition frequency (PRF) radar and the 
existence of the shadowing effect, which will lead to generate 
aliased images. Thus, the newly compressed sensing (CS) 
theory [4]-[5] is applied into narrow-band radar imaging, 
improving the imaging performance greatly [6]-[7].  

3-D images are capable of providing a more reliable 
description of target features and the identification of any given 
specific scatterers on the targets. Therefore, in [8]-[10], 3-D 
imaging algorithms are proposed for wide-band radars. In [8], 
the GRT-CLEAN algorithm makes use of the sinusoidal 
envelopes of the spinning scatterers in the range-slow time 
domain and obtains an image via noncoherent accumlation. 
Furthermore, the CLEAN technique is adopted in this 
algorithm for sidelobe reduction. A matched-filter-bank-based 
3-D imaging algorithm is proposed in [9], based on target 
motion features. For a given matching parameter, a 2-D image 
slice is generated. Then, a series of 2-D image slices are 

obtained by changing the matching parameters of the matched 
filter bank, and finally, the 3-D target image is obtained. At the 
same time, a high-resolution 3-D imaging algorithm via the 
back-projection transform is proposed in [10], which makes 
use of both the sinusoidal envelope and phase information in 
the range-slow-time domain. Since the image is obtained via 
coherent accumulation, this algorithm is high in resolution and 
robust to additive noise. Although these algorithms are capable 
of providing high-resolution 3-D images and a more reliable 
description of target features, these algorithms based on wide-
band radar are of high complexity and are difficult for real 
implementation of 3-D imaging. Besides, sample deficiency 
will lead to generate aliased images, influencing the target 
identification.  

In this paper, a novel interferometric 3-D imaging 
algorithm for spinning targets is proposed based on narrow-
band radar. This algorithm requires a radar system equipped 
with two receiving antennas. The echoes from the target are 
simultaneously received by the two receivers and are processed 
to obtain a pair of 2-D images, respectively, via narrow-band 
radar imaging algorithms. The height information of the 
scatterer is estimated by the phase difference between the same 
scatterer in two 2-D images. Furthermore, by defining a joint 
sparsity of image pairs, a CS algorithm is proposed to jointly 
form CS images, which can generate 3-D imaging result using 
limited measurements. At last, simulation results verify the 
effectiveness of the proposed algorithm. 

II. INTERFERMETRIC 3-D IMAGING FOR SPINNING TARGETS 

BASED ON NARROW-BAND RADAR 

A. Signal model 
The discussion in this paper are based on the following 

assumptions. First, the translational motion of the spinning 
target is compensated completely. Second, the spinning speed 
is constant in the imaging interval. The geometry for 
interferometric 3-D imaging system is shown in Fig. 1. The 
two antennas O  and A  are located separately along the 
elevation direction, and the radar line of sight (LOS) is along 
the Y/ Y′  axis. The target angular velocity is Ω , with R as its 
spinning axis. α denotes the angle between R and the Y/ Y′  
axis. 2-D image is a projection of a 3-D target onto 2-D 
imaging plane X O Y′ ′ ′ . The angular velocity Ω  is supposed to  
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Fig. 1. The geometry of interferometric 3-D imaging system. 

be estimated by autocorrelation method introduced in [1]. 

For narrow-band radar, the base-band signal at antenna 
( { , })i i O A∈ from a scatterer in the slow-time domain satisfies 

( )( ) exp 4 ( ) /i n i i ns θ σ j πR θ λ= −                       (1) 

where , , , ,n n N= 1 2q  is the rotation angle in the imaging 
plane, σ

i
is the reflectivity of the scatterer at the antenna i , λ is 

the wavelength, i nR ( )q  is the instantaneous distance between 
the scatterer and the radar. Let the initial coordinates of the 
scatterer be ( , , )x y z′ ′ ′ , according to Fig. 1, i nR ( )q  satisfies 

( ) sin cos( )sin( ) sin cos( )cos( )

          cos sin( )

        cos( )sin( ) cos( ) cos( ) sin( )

′ ′= +
′+

= + +

i n i n i n
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where a  is constant in the imaging interval, the initial 
coordinates ( , , )x y z of the scatterer remain unchanged in the 3-
D imaging space. The imaging plane can be digitized 
by cos( ) Δix φ p x= , cos( ) Δiy φ q y= , 1, ,= p P , 1, ,= q Q , 
where Δx and Δy  are the pre-discretized grid space. 
Supposing Δx and Δy  is sufficiently small with respect to the 
wavelength, all scatterers are located exactly on the pre-
discretized grid. Then, (1) can be expressed as 

1 1
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B. Narrow-band radar 3-D imaging algorithm  
The 2-D image can be obtained by applying complex-

valued back-projection algorithm, which can be expressed as 

4ˆ ( , ) exp sin

4
         exp [( ) sin ( ) cos ]
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where [ ] exp 4 ( sin cos ) /n nj p x q yπ θ θ λ′ ′Δ + Δ  is the phase-
searching term, a peak value appears in the reconstructed 
image îI  when p p′ =  and q q′ = . On the other hand, no peak 
appears if p p′ ≠ and q q′ ≠  since the summation cannot be 
accumulated effectively.  

Furthermore, after interferometric processing, the phase 
difference of the scatterer between two received signals can be 
expressed as follows 

4
(sin sin )O Azπφ ϕ ϕ

λ
Δ = −                        (5) 

Since the baseline length is much shorter than the distance 
between the radar and the target, the elevation angle difference 
of the two antennas is quite small. Without loss of generality, 

A Oϕ ϕ ϕ= + Δ , and 1ϕΔ  . Therefore, (5) is written as 

4
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   (6) 

As a result, the height of the scatterer can be estimated by 

4 cos O

z λ φ
π ϕ ϕ

Δ≈
Δ

                               (7) 

According to (7), the height information of each scatterer 
can be estimated by the phase difference between the 
corresponding pixels of two generated images from two 
closely separated antennas located along the elevation 
direction. 

III. INTERFEROMETRIC 3-D IMAGING BASED ON CS 

According to the Nyquist sampling theory, the radar PRF 
should be at least twice the Doppler bandwidth of the target 
returns in order to avoid Doppler spectrum aliasing. Thus the 
radar PRF should satisfy the following condition 

max max2 4 Ω /≥ =dPRF f R λ                       (8) 

where df max
is the maximum of Doppler frequencies and 

max
R is the largest distance between some scatterer and the 
 target center. For high speed spinning targets, the required 
radar PRF usually cannot be satisfied, and there usually exists 
the shadowing effect. In some sense, the insufficient PRF and 
shadowing effect will lead to azimuth under-sampling, which 
will lead to generate aliased images. Recently, the newly 
developed theory of compressed sensing (CS) raised by 
scholars presents a novel way to deal with this problem.  

As the height estimation is estimated from a pair of 2-D 
images generated by two closely separate antennas, the first 
step of 3-D imaging is to generate 2-D images based on CS. 
Referring to (3), the received signal for each antenna can be 
rewritten as the following matrix form 

i iS I= Φ                                         (9) 

where iS  is data matrix from thi antenna with the size 
of 1×N , iI with the size of 1×PQ denotes the image vector to 
be formed in the thi antenna, in which the corresponding 
scatterer’s scattering characteristics of every element is as a 
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TABLE I.  IMROVED OMP ALGORITHM 

 
vector of the dictionary Φ with the size of N PQ× . The 
dictionary Φ  can be defined as 

{ }1 2Φ , , , , ,

4
exp[ ( Δ sin Δ cos )]

×

× ×

=

= − +

 N PQ pq PQ

pq N 1 N 1

φ φ φ φ

πφ j p x θ q y θ
λ

    (10) 

Each pixel of the reconstructed image can be denoted as 
( ) ( )exp( 4 sin / )i i pq iI pq pq j zσ π ϕ λ= − , and each non-zero pixel 

represents one scattering center located on the target. Generally, 
the whole non-zero pixels occupy only a small part of the 
image plane, which motivates the CS theory to reconstruct îI  
from iS . One way to reconstruct two radar images is to apply 
CS independently for each antenna. In fact, the relative phase 
information may not be preserved on account of the possibility 
of shifts between the two images. Therefore, we propose 
another way to solve this problem. By defining a global 
sparsity of image pairs and defining a CS method that jointly 
forms CS radar images, scattering centers are located in the 
same pixels in both images.  

Since the two images share the same sparsity support, that 
is to say, the scattering centers are located on the same 
positions in both images, we define the following joint-sparsity 
constraint as 

0 0O AI I I= +                               (11) 

where 
0

I represents the joint-sparsity. According to (11), we 
take the sum of the two images as the common sparsity support, 
and then we can reconstruct the two images constrained by (11), 
which can be formulated as     

2
0( , )

2

min      . .
O A

O O

I I
A A

S I
I s t

S I
ε
ε

 − Φ ≤
 − Φ ≤

                   (12) 

where e  is chosen according to the channel with lower noise 
level to make sure that good radar images can be obtained for 
each antenna. In the case of this paper, (12) can be solved by an 

improved orthogonal matching pursuit (OMP [11]) algorithm, 
and the detailed procedures are given in Table I. 

IV. SIMULATION RESULTS 

In this section, simulation experiments are carried out to 
test the proposed 3-D imaging algorithm. The radar carrier 
frequency is 10 GHz and the system bandwidth is 20MHz, 
giving a range resolution of 7.5m. A target composed of nine 
scattering centers with the same unit amplitude reflectivity 
function is simulated, as shown in Fig. 2(a). A pair of antennas 
with elevation angles 0°and 0.01° are used to simulate the 
interferometric system. The target rotates at a frequency of 
15Hz and the maximum rotation radius is 0.2 m. According to 
(8), the required PRF for non-aliased imaging is 2513 Hz. The 
imaging interval is 0.5 s and the number of azimuth samples is 
1256. Since a narrow-band waveform is transmitted, the range 
profile is still within a single range cell after range compression.  
Fig. 2(b) shows the 3-D reconstruction result by complex-
valued back-projection (CBP) algorithm. As can be seen, the 
positions of the scattering centers in the X direction and Y 
direction can be estimated accurately, and the estimated height 
information only provide overall shape, which cannot provide 
correct values due to interaction between scattering centers. 
However, the CS-based algorithm can reconstruct the 3-D 
positions of scattering centers accurately, as shown in Fig. 2(c). 

Besides, sample deficiency is usually inevitable in practice 
due to low PRF radar and the existence of the shadowing effect, 
which will lead to generate aliased images.  We reduce the PRF 
to a quarter of the required value (628 Hz). The imaging 
interval is 0.25s and the number of target sample 157.  For 
scatterers on each floor, the back-scattering coefficients are 0.4, 
0.8 and 1 respectively according to their distances from the 
target center. 3-D images obtained via the CBP-based 
algorithm and the CS-based algorithm are shown in Fig. 3(a) 
and (b) respectively. A comparison shows that the CBP-based 
algorithm only can estimate the positions of strong scatterers, 
while the CS-based algorithm can estimate 3-D positions of all 
scatterers with small errors. 

V. CONCLUSION 

This paper derives a class of geometrical and signal 
models for narrow-band radar interferometric 3-D imaging for 
spinning targets, and proposes CBP-based and CS-based 3-D 
imaging algorithms. The CS-based algorithm can estimate the 
height information more accurately than the CBP-based 
algorithm. More importantly, when the required PRF cannot 
be satisfied, the CS-based algorithm can still estimate the 3-D 
positions of the scattering center. At last, numerical simulation 
are provided to validate the effectiveness of the proposed 
method. Further, the effectiveness of the proposed algorithm 
still needs to be tested with real measured radar data. 
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Fig. 2. Comparison of imaging results without sample deficiency. (a) Target 

distribution. (b) CBP-based algorithm. (c) CS-based algorithm. 
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