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Abstract: This paper presents a D-SIFT based feature 

extraction hardware accelarator used in a real-time 

computer-aided diagnosis (CAD) system for endoscopic 

images. The FPGA implementation demonstrates that the 

proposed hardware oriented D-SIFT architecture was very 

compact due to no multipication is used and was very 

suitable for stream based image processing. The processing 

time for Full-HD (1920x1080) high resolution image is only 

20 msec@100 MHz and it is about 700 times faster than that 

of software implementation (14 sec). The proposed D-SIFT 

accelarator can be also applicable for the feature extraction 

part for various types of image processing including 4 K and 

8 K high resolusion images. 

 

1.  Introduction 
With the increase in the number of colorectal cancer patients, 

systems which support a doctor's diagnosis have been 

researched. The CAD system for colorectal endoscopic 

images with NBI magnification [1] has already been 

proposed [2]. The proposed CAD system identifies 3 types 

of colorectal endoscopic image (Type A, Type B, and Type 

C3) as shown as Fig. 1. Currently our software imple-

mentation of the system is able to identify with only the 

region (we call scan window) as small as 120x120 pixels at 

14.7 fps and it takes about 20 minutes to scan and process a 

whole Full-HD (1920x1080) image. For further speed 

improvement for high resolution image, a hardware 

realization is indispensable because the computation time of 

software implementation is expo- nentially increased with 

the increase of image size. As a demand on a clinical doctors, 

the proposed CAD system satisfies the throughput of 1 - 5 

fps and the latency is at least 1 sec for on-the-fly diagnostic 

supporting.  

In this paper, we propose a hardware accelerator with an 

FPGA by implementing our hardware oriented Dense Scale-

Invariant Feature Transform (D-SIFT) architecture [3] for up 

to 4K and 8K image sizes within real-time processing.  

 

2.  Outline of Computer-Aided Diagnosis System 

Outline of the proposed CAD system is shown in Fig. 2. The 

system is based on a Bag-of-Features (BoF) representation 

of local features in the endoscopy image.  

 The system has two stages, learning and testing.The 

overview of processing flow of the system is as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, the features of the endoscopy images in each type 

are extracted based on Dense Scale-Invariant Feature 

Transform (D-SIFT) algorithm [3] because the pit patterns 

of endoscopic images (Fig. 1) are very complex and irregular 

comparing with object recognition such as face and 

pedestrian recognitions. Then the features obtained from the 

learning phase are clustered and the center of each cluster is 

saved as a Visual-Word (VW) for each type, which are used 

for feature representation using k-means clustering. In the 

classifier module, support vector for support vector machine 

(SVM) is obtained at the learning phase using the type 

information of leaning image which is judged by the 

professional doctors. Next, in the testing phase, the D-SIFT 

based feature extraction is perfomed for a whole input image 

and a visual-words histogram is created by voting for the 

nearest VW. Then the CAD system classifies the testing 

image within a endoscopy movie (frame) by pre-learned 

SVM.  

Finally, a color gradation map which is converted from 

the result of classifier for each SW displays for doctor as a 

Figure.2. Computer-Aided Diagnosis System  

for Endoscopy Image. 
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Figure. 1. Narrow Band Imaging (NBI) magnification findings [1]. 
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“second opinion”. In our software implimentation, D-SIFT 

of Library VLFeat [3] is used for the feature extraction and 

Support Vector Machine (SVM) of LIBSVM [4] is used for 

type identification. 

 
 

3.  Hardware Oriented D-SIFT Algorithm 

We have proposed the original D-SIFT algorithm [5] so as to 

achive a stream based processing and a multiplication less 

implimentation by the following three considarations: (1) 

Improvement of the Gradient Direction Calculation 

Processing, (2) Simplification of the Weight for Con-

volution Processing and Convolution Features Sharing, and 

(3) Normalization Replacement by Threshold Processing.  

3. 1 Improvement of the Gradient Direction Calculation 

Processing 

In our system, feature quantities of endoscopic images are 

extracted based on the direction of a gradient and the 

intensity of luminosity. The gradient of the luminosity value 

to x-direction is defined as Gx, and the gradient of the 

luminosity value to y-direction is defined as Gy. As shown 

in Fig. 3, the direction of a gradient and the intensity are 

calculated using Gx and Gy for each pixel. The most accurate 

method (original implementation) calculates the 𝑇𝑎𝑛−1(
𝐺𝑦

𝐺𝑥
) 

angle and the gradient intensity of luminosity before 

assigning them to the 8 directions as shown in Fig. 4 (a). 

However, this calculation method is very complicated, and 

is not suitable for hardware implemen-tation.  

In our implementation, the gradient of the luminosity 

value of the pixel are roughly classified into 4 directions 

according to the sign of Gx and Gy, and then, each rough 

direction is finely divided into two by comparing the 

absolute values of Gx and Gy as shown in Fig. 4 (b), equation 

(1), (2), and Table 1, respectively. By that, the pixels are 

classified in 8 directions based on their signs and absolute 

values in x and y directions. The number of dimensions relies 

on the number of directions that a gradient is divided. 

𝑇𝑎𝑛(0) = 0 <
|𝐺𝑦|

|𝐺𝑥|
< 𝑇𝑎𝑛 (

𝜋

4
) = 1 (1) 

⇔  |𝐺𝑦| < |𝐺𝑥| (2) 

3. 2 Simplification of the Weight for Convolution 

Processing and Convolution Features Sharing 

The gradient intensity of each computed direction is 

convolved. This convolution occurs with all blocks in each 

feature description unit. The coefficient for convolution 

process relies on the distance from the central point to the 

corresponding block as shown in Fig. 5.  

A feature description unit is generated by multiplying the 

weighted factor in Fig. 5 with the corresponding 4 x 4 blocks. 

Hence, the feature of each block in a feature description unit 

is different from that in other feature description unit. By 

omitting this process, weighted features of the same block in 

all feature description units are similar regardless the feature 

description unit it belong to. Hence, those feature value are 

sharable among different units as shown in Fig. 6. 

3. 3 Normalization Replacement by Threshold Processing. 

The convolved block values are normalized in a unit of 16 

blocks. This aims at obtaining the same feature quantity 

regardless of changing in brightness, as shown in Fig. 7. 

However, normalization process needs multiplication, 

division, and square route computation with many inputs, as 

shown in equation (3) and Table 2. In our implementation, 

the difference of the luminosity value was controlled by 

performing threshold comparison as shown in equation (4) 

and Table 2 at the output value of Gaussian Filter processing 

(Fig. 8). By applying threshold processing, we can omit the 

normalization process to reduce hardware size as well as 

shorten the computation critical path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3. Brightness gradient calculation method. 
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Table. 1. Parameter of the Gradient Direction Calculation.. 

I (i, j) Luminosity value at (i, j)

Gx The gradient of the luminosity value to x-direction

Gy The gradient of the luminosity value to y-direction

Dir Value to express an gradient direction

Figure. 4. Gradient direction calculation method. 
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4.  The Proposed D-SIFT Architecture 

The hardware architecture of the proposed algorithm is 

shown in Fig. 10. The architecture consists of four units, (a) 

simple gaussian filter processing unit, (b) gradient 

calculation unit, (c) direction and intensity of gradient 

calculation unit and (d) directions convolution unit. In the 

proposed architecture, pipeline processing is realized by 

using FIFO. Moreover, by reducing the number of directions 

of the gradient from 8 to 4, the amount of memories is 

reduced by about 20%. In addition, pipeline processing is 

realized by performing block line gradient computation. 

Each pixel will get to the system for block line gradient 

computation before storing into block buffer. When the pixel 

in the next line of the same block comes, the corresponding 

intermediate block line gradient is read from the block buffer 

to continue the gradient computation for that block. In the 

system, two block sizes of 5- and 7-pixel are necessary, unit 

(c) and (d) in Fig. 10 are duplicated for Block Size = 5, 7 

pixels processing in parallel. 

 

 

 

 

 

 

 

 

 

 

 

5. FPGA Implementation and Evaluation 

We have implemented the D-SIFT architecture on FPGA, 

Altera Stratix IV (EP4SE530H35C2) device. The occupied 

resources and processing time are shown in Fig. 11. The DSP 

(Digital Signal Processing) block in Altera’s FPGA is the 

dedicated block used to calculate the fixed-point 

multiplication in high speed and it is suitable for our SVM 

based classifier [6]. Hence, the DSP less D-SIFT imple- 

mentation is the best for our CAD system.  

 An evaluation platform is shown in Fig. 12. The platform 

receives the input image with capture board on a PC via a 

HD-SDI cable. Then the D-SIFT feature extraction occurs on 

the FPGA board, then feature quantities are sent to feature 

transformation and identification modules on the PC for 

cluster searching, voting to create and identifying using 

SVM. Finally, the result of SVM module is displayed as the 

supporting image. 

 The result of latency comparison with software (original) 

implemantation and the proposed hardware implementation 

is shown in Fig. 13. The table in Fig. 13 shows the 

relationship between number of pixels and Scan Window 

(SW) which is the region for feature extraction from the input 

image. The plots on the graph shows processing latency by 

𝐷𝑠𝑡𝑛 =
𝑇𝑚𝑝𝑛

√𝑇𝑚𝑝1
2 + 𝑇𝑚𝑝2

2 + ⋯ + 𝑇𝑚𝑝128
2

 (3) 

𝐼𝑚𝑔′′(𝑥, 𝑦) = min {𝐼𝑚𝑔′(𝑥, 𝑦) ≫ 10,   255} (4) 

Figure. 7. Aims of normalization. 
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Figure. 9. D-SIFT Flow Chart and Proposed threshold processing  

for normalization replacement. 

n The number of dimensions

Tmpn The value of dimension n before normalization

Dstn The value of dimension n after normalization

Img” The value which smoothed the input image

Img’ The value which performed threshold processing

Table. 2. The parameters of normalization. 

Fig. 10: Compact and high-speed D-SIFT architecture. 

↑ Block Buffer

↓ Block Buffer

→ Block Buffer

← Block Buffer

4
:1

 M
U

X

we 2

13

0

52

0

0

0

0

cnt

Controller

cnt

8

Gx/G

y

sign

13
( 13 bit x 383 )

cnt

+

+

↑ Block Buffer

↓ Block Buffer

→ Block Buffer

← Block Buffer

4
:1

 M
U

X

we 2

13

0

52

0

0

0

0

cnt

Controller

cnt

8

Gx/Gy

sign

13
( 13 bit x 383 )

cnt

+

+

5 Line Buffer

Reg

Array

( 5 x 5 )

8

8
Line Buffer

8

7

7

( 8 bit x 1920 x 5 word )

1

2

5

2
+

>>

<<

8

13

8 8 8

( 8 bit x 1920 )

64-dimension 

Feature 

Memory

<<

<<

Input Image

1920x1080

（Full HD）

Gy

Gx

Img

Img’

Line Buffer

-
-

Scale : 5 processing unit

Scale : 7 processing unit

(a)

( c )(d)

( b )

Figure. 6. Convolution Process by hardware implementation. 

Hardware Implementation

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Weight Factor

Sharable 
block value

Feature of all blocks are similar regardless 

the feature description unit they belong to

x

Block Size : 5, 7 pixel

389



software inplementation and the proposed hardware. The 

performance is estimated for Full-HD (2 M pixels) image, 

the proposed hardware D-SIFT is about 700 times faster than 

that of software implementation. From this result, our 

proposed hardware is applicable for real-time processing for 

4K and 8K high resolution image, which takes 80 msec and 

160 msec, respectively. The proposed hardware can be used 

as a D-SIFT feature extraction accelarator for general images 

beyond the endoscopic images. Also, we estimate the 

performance of the whole system with the estimation results 

of other modules, feature transformation [7], and type 

identifier module [8]. From the implementation results, the 

throghtput is 16.7 fps and latency is 60 msec. So real-time 

processing is achievable for the on-the-fly diagnostic support 

system for clinical doctor (demand throghtput: >5 fps, 

latency: <1 sec).  

 

6. Conclusion 

This paper introduces our hardware accelerator imple-

mentation for the fundamental D-SIFT feature extraction in 

real time. The feature extraction time is linearly changed 

with the image size, in which D-SIFT features of 8K image 

can be extracted in as short as 160 msec and that for 4K 

image takes relatively short as 80 msec. Hence, this 

fundamental real-time DSIFT feature extraction accelerator 

implementation can be used in any application regardless the 

image size and scan window size. In addition, the relatively 

small hardware size occupation (0.5%) of the proposed 

implementation leaves many spaces for other application 

implementation. In particular, applying the proposed 

accelerator to CAD system with Full-HD image significantly 

increases the DSIFT feature extraction speed up 700 times 

compared with the software implementation. Processing 

time for a Full-HD image reduces from 14 sec in software to 

20 msec @ 100MHz frequency.  

Our future work includes the development of the whole 

CAD system including our D-SIFT to VW feature 

transformation architecture and our SVM architecture in one 

FPGA board. 
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Fig. 11: FPGA implementation results. 

Resources Available SGF GC BFC Total
# of ALUTs 424,960 919 603 473 1995 (0.47 %)
# of Registers 424,960 683 374 350 1407 (0.33 %)
Total RAM [bit] 21,233,664 65,536 32,768 26,624 124928 (0.59 %)
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Fig. 13: Latency comparison with software 

          and proposed implementation. 

101

103

104

100
1 1.2 1.5 2.1
10.8

42.6 79.7 122

1

10

100

1000

10000

0 10000 20000 30000 40000 50000 60000

La
te

n
cy

 [
m

se
c]

# of pixels [ x 104]

SW60 SW120 SW180 SW240

Software

FPGA

Full-HD
14 sec

SW size SW60 SW120 SW180 SW240

# of pixels 3,600 14,400 32,400 57,600

101

102

103

104

100

1 2×1042 3 4 5 6 207    

x 700

20 msec
102

…

D-SIFT

FPGA (StratixIV)

Software Test 
Bench on PC

D-SIFT to VW 
D-SIFT Features

VW histogram

En
d

o
sc

o
p

y 
Im

ag
e

Su
p

p
o

rt
in

g 
im

ag
e

Test Evaluation Platform

• OS: Windows 7 Enterprise SP1 64bit
• CPU: AMD FX-8120 8Core Processor@3.10GHz
• Memory: DDR3-1333 8GB x 4
• Software IDE: Microsoft Visual Studio 2012

P
C

Ie
3

.0

Mounted FPGA board 

HD-SDI Signal

SVM

Capture board

Probability

Fig. 12: The evaluation environment. 

390


