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Abstract:    In this paper, we propose a method of signal-
dependent noise estimation and denoising that operates on 
the CFA (color filter array) raw image. The proposed 
method effectively deals with signal dependent noise by 
estimating and denoising on the texture domain in a CFA 
LR (low resolution) component-wise and localized manner. 
The proposed method is practically evaluated on a 
simulated end-to-end imaging pipeline. The experimental 
results indicate that the proposed method indeed efficiently 
removes signal-dependent noise. 
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1.  Introduction 
Nowadays it has become fairly easy to obtain high- 
resolution digital images, thanks to the growth in 
electronics and camera industries. The demand for high 
resolution digital cameras is non-decreasing, and is high all 
the time. Smaller and handy cameras are available, enabling 
their users to take photographs freely of time and places. 
When obtaining such an image, noise, which occurs other 
than the image signal, causes quality deterioration. Digital 
image noise is known to originate from 5 sources [1]. 
Especially, in low-light environment, signal dependent 
noise, among all, is dominant. In such a dim situation, a 
practical solution to compensate for the deficient brightness 
is to adjust the ISO level. This means scaling the electrical 
signal at the CCD sensor level, and through this process not 
only the image signal but also noise is amplified. Therefore, 
a large body of research effort is dedicated to denoising the 
camera capture noise. 

As the incident light to the camera through the lens 
reaches the camera sensor, analog data representing the 
image is generated. Here, the incident light goes through 
three color filters matched to the long, middle and short 
wavelengths to generate the R, G, B digital values. This is 
to obtain a color image (R, G, B values) using a single CCD, 
and it is chosen which color value is to be sensed at each 
location of the CCD. (Although there are 3-CCD cameras 
that do not use color filters, 1-CCD camera are most 
popular.) Therefore, the color filter needs to be arranged in 
a pattern, and most cameras use the Bayer pattern. Using 
the Bayer pattern, each of the R, G, B color channel images 
half the resolution of the CCD sensor. The image at this 
stage is called ‘mosaicked,’ due to the reason that the three 
R, G, B channels are incomplete, and they are arranged 
together in a designated pattern as a single image. 

The process needed to generate a full-resolution RGB 
image using the half-resolution mosaicked image is called 
‘demosaicking [2].’ Demosaicking methods usually assume 

that the image is noiseless. Because the image after the 
Bayer pattern (before demosaicking) is a collection of 
signal values that has gone through different color filters, 
neighboring pixels belong to different color component and 
the noise in those are independent. This implies that there is 
no correlation between the noises contained in different 
color components. Because demosaicking methods 
particularly refer to the neighboring pixels for the purpose 
of filling in the ‘mosaicked’ pixels, and thus generating the 
full-resolution image, demosaicking causes correlation 
between the noises contained in different color components 
[3]. This correlated noise is not Gaussian and not event 
independent (by definition), and therefore difficult to 
remove. For this reason, denoising must be carried out 
before the demosaicking step.  

Because the noise level of a taken photograph is 
unknown (blind denoising), it is important to estimate the 
amount of image noise to obtain reasonable denoising 
performance. One such method of noise level estimation is 
[4], which picks out the weakly textured regions of the 
image, and applies PCA (principal component analysis) to 
estimate the noise. 
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Figure 1. (a) color checkers in raw image;  

(b) different level of (signal-dependent) noise for each 
color checker 
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Fig 1. (a) shows a Bayer raw image of the color checker. 
The signal level differs for each of the color patches in the 
color checker, and consequently has different signal-
dependent noise levels. This can be seen from Fig. 1 (b), 
which shows estimated signal-dependent noise levels for 24 
color patches, from top left to bottom right. Global denotes 
the overall noies level for the entire image. We see that the 
local noise level highly variates, and thus localized 
denoising according to local noise levels is required. 
Conventional noise estimation methods are not appropriate 
for local, signal-dependent noise estimation. For signal-
dependent noise, the noise level differs with signal intensity, 
and thus noise should be estimated locally. 

In this work, a method of signal-dependent noise 
estimation and denoising that operates on the CFA (color 
filter array) raw image is proposed and evaluated on a 
simulated end-to-end imaging pipeline that resembles those 
of actual imaging devices. 

In section 2.1, the proposed noise level estimation on 
texture domain method is explained. In section 2.2, we 
explain how the proposed noise level estimation can be 
applied to different Bayer pattern components and how the 
scene-dependent noise can be removed. In the experimental 
results, we evaluate the scene-dependent noise removal 
performance by using different scene irradiance. 
 
 
 

2.  Proposed Method 
2. 1 Noise estimation on texture domain 

Noise estimation is by definition based on separating noise 
from the image signal. If there is large fluctuation in the 
signal, it is difficult to distinguish signal from noise. 
Naturally, noise estimation methods try to find flat or little-
varying homogenous regions to estimate the level of noise. 
One such a method proposes weak textures on which noise 
is estimated [4].  

In a flat image patch, the minimum variance direction 
of the image should have a very small eigenvalue. If not, 
this can be attributed to noise. Let us assume an additive 
noise model y = x + n, where y is the noisy image, x is the 
noise-free image and n is the additive noise. Then, the noise 
strength can be expressed as 

λmin(Σy) = λmin(Σx) + σn
2                         (1) 

where λmin denotes the minimum eigenvalue, Σ is the 
covariance matrix, σn

2 is the noise variance. Since in a flat 
patch λmin(Σx)0, the noise variance can be estimated as, 

σn
2 = λmin(Σy)                                (2) 

However, because of the signal-dependent noise, the 
noise level in flat regions is not equal to those in other 
regions. Signal-dependent noise level differs according to 

 
Figure 2. End-to-end imaging pipeline. 

 

 
(a)                                                               (b)                                                             (c) 

 

 
(d)                                                               (e)                                                             (f) 

 

Figure 3. (a) Ground truth image; (b) Noisy image; (c) Global estimation[4] & denoising;  
(d) Proposed global noise estimation & denoising; (e) Proposed global noise estimation & localized denoising; 

(f) Proposed localized noise estimation & denoising 
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the local signal intensity. Therefore, we propose a localized 
noise estimation. In particular, when the local region 
subject to noise estimation is highly deficient of flat object, 
the noise estimation tends to be very inaccurate. To 
overcome this problem of sample deficiency, we 
decompose the image into edge and texture domains [5] 
which are given by 

y = ye + yt                                   (3) 

where subscripts e and t denote edge and texture domains. 
Using this decomposition method, even when there is large 
fluctuation in the signal, the texture components 
(containing noise) can be extracted effectively. Therefore, 
there is no deficiency of flat patches and signal-dependent 
noise can be locally estimated on the texture domain. 

2. 2 Local and RGB component-wise noise estimation 

The raw output of a digital camera is demosaicked to form 
three color channels. Demosaicking is a process of 
interpolating missing (mosaicked) color components using 
the information of other color channels. During 
demosaicking, noise in each color channel is propagated to 
other color channels. This causes the formerly independent 
noise to become correlated, which means its characteristic 
is complexed and hard to analyze theoretically, e. g. in 
terms of probability distributions [3]. To avoid such 
complexity, noise estimation and denoising should take 
place before the demosaicking process. 

Since the CFA (color filter array) raw image is 
mosaicked, denoising methods that operate on spatial 
domain cannot be directly applied. Therefore, we aggregate 
pixels corresponding to different locations in the CFA 
pattern to obtain what we denote the CFA LR (low 
resolution) components.  

Component-wise noise estimation enables us to 
estimate signal-dependent noise more accurately. Here, 
although the structure of CFA LR components may be 
similar, the intensity of each channel obviously differs. 
Different scene objects and sensor sensitivities result in 
highly different intensity levels [3] and this means the noise 
level in the image is highly spatially variant. Assuming that 
the illuminant is constant, the signal intensity largely varies 
with the sensor sensitivity and scene reflectance. Therefore, 
noise estimation should locally adapt to the imaging scene. 

Due to the localized denoising, block boundary effects 
may occur, and we apply patch overlap to reduce such 
artifact. After a local image block is processed, the next 
image block has a 20-pixel overlap with the previously 
processed block. Overlapped pixels are averaged and their 
relative weights are given according to the estimated noise. 
The pixel of the block with lower (estimated) noise is given 
larger weight. 

Once the component-wise denoising is done, the 
denoised CFA LR components are replaced in their 
respective locations in the Bayer pattern. Finally, the 
denoised Bayer CFA raw image is demosaicked to form an 
enhanced full native resolution image. The whole pipeline 
is depicted in Fig. 2. 

 

3.  Experimental Results 
In order to evaluate the proposed noise estimation and 
denoising methods, we obtained raw images (CR2 format) 
of diverse scenes using Canon 5D Mark III. We used patch 
sizes 7x7 and search region size 100x100 for localized 
noise estimation. The proposed localized noise estimation 
and denoising is compared to global noise estimation and 
denoising, using the renowned BM3D [6]. 

Because there are no actual noise-free ground truth 
images, we generated pseudo noise-free ground truth 
images using temporal multi-frame images. We took 500 
shots each for three static in-door scenes. The average of 
500 shots is used as the pseudo ground-truth image [7]. 

As in Fig. 2, we apply the proposed denoising scheme in 
the end-to-end simulated imaging pipeline, as in an actual 
imaging device. Performance is evaluated at each step of 
the pipeline as well as after at the end of the pipeline 
including the white balance, which is the usual domain for 
quality evaluation. Fig. 3 (a)-(f) show final results of the 
simulated imaging pipeline; (a) is the mean of 500 shots as 
the pseudo ground-truth, (b) is the noisy image, (c) is the 
global noise estimation [2] an denoising result, (d) is the 
proposed method for global noise estimation and denoising 
result, (e) is the proposed method for global noise 

Table 1. End-to-end imaging pipeline PSNR. 
 

 Noise estimation + Denoising PSNR(dB) 
Image 1 Global + BM3D 36.57 

Local  + BM3D 37.81 
Image 2 Global + BM3D 35.03 

Local  + BM3D 35.94 
Image 3 Global + BM3D 29.88 

Local  + BM3D 30.51 
Image 4 Global + BM3D 27.35 

Local  + BM3D 27.56 
Image 5 Global + BM3D 29.72 

Local  + BM3D 30.50 
 

 
Figure 4.  5 in-door test raw images 
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estimation and localized denoising result, (f) is the 
proposed localized noise estimation and denoising result. 
Table 1 shows the PSNR results for our test image set. The 
PSNR and result images show that the localized noise 
estimation and denoising is superior to global noise 
estimation and denoising given signal-dependent noise. 
 

4.  Conclusion 
This work proposed a localized noise estimation and 
denoising scheme for CFA raw images. The experimental 
results indicate that the proposed localized noise estimation 
and denoising deals better with signal-dependent noise. The 
proposed method was evaluated at each step of the imaging 
pipeline and indeed turned out to be superior to global noise 
estimation and denoising at every step. 
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