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(a) X-ray  CT                 (b) EIT 
Fig. 4 The concept of weighting matrix. 

The elements which are not passed by steam line in 
domain can be defined as follow: 
 

 
omoinhstB

iW ρρ ⋅=                           (4) 
 

where , ρ  is the internal resistivity vector and omoinhstρ  is 
the stream line vector for l‐th current pattern. 

The sensitivity distribution in the domain generally 
depends on the internal resistivity distribution. However, 
the closer in the distance between a stream line and an 
element, the larger in sensitivity factor. Therefore, it is 
assumed that the existing elements between adjacent stream 
lines for l‐th current pattern only influence the stream lines.  

In Fig. 4(b), two lines jL  and  1jL +   are j ‐th  and 

j 1‐th  stream lines for l‐th current pattern, respectively 
and triangles are elements to reconstruct the resistivity 
distribution in the domain and the point in a triangle is the 
center of gravity of the triangle. The weignting factors 
between adjacent the stream lines  jL  and  1jL +  for l‐th 

current pattern and  i‐th element are defined as: 
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                (5) 
 

Where , M is total number of element in the domain, N is 
the number of streams for a current pattern, N is L-2.  L is 
the number of eletrode.  In Eq.(5), 1st and L-1-th stream 
lines do not use. Because, the currents are injected these 
electrode.     

The forward matrixes  F
iW which relates all elements in 

the domain to stream lines for l‐th  current pattern and 
defined as  
 

TB
i

F
i WW )(=                                     (6) 

  Using these weighting matrices, DART can be 
summarized as follows:  

 
)(1 llllll ρρρρ FstB WW omoinh −+=+     

LLLLLLL ,
4

3,
4

2,
4

,,
4

31,
4

21,
4

1,1 Ll +++=   (7) 

 
Where, lρ  is the internal resistivity vector, 

FB WW ll , are 
the backward and forward weighting matrices for l‐th 
current pattern, respectively. omoinhst

lρ  is the mean resistivity 

vector of stream line for l‐th current pattern. The iteration 
in DART is completed after L times update, for L-electrode 
system. A computation time of DART is significantly fast. 

Becasuse, the used FEM mesh for reconstruction and the 
stream line are fixed a priori. So, weighting matrices can be 
precalculated off-line. In this reason, on-line computational 
burden can be reduced significantly in real application. 
 

3. NUMERICAL SIMULATION 
 

To verify the performance of the DART method, we 
have conducted numerical experiments. We compare the 
DART with BP algorithm [4, 5]. The BP algorithm is well 
known by reconstruction algorithm for EIT system. To 
calculate boundary voltage, we use 3104 mesh as shown in 
Fig. 5. The FEM meshes in Fig. 5 are the pahntom with 800 
mm diameter and 32 electrodes on the surface. For current 
injction, we use adjacent current patterns. We assume the 
resistivity values of object and the background are 600Ωcm 
and 300Ωcm, respectively. We used for three cases to 
confirm the reconstruction performance of proposed 
algorithm. Fig. 5 shows the true images used in numerical 
simulation. The reconstructed images are shown in Fig. 6, 7.  
 

 
Fig. 5 The FEM Mesh. 

 

        
(a) Case 1                       (b) Case 1 

 

        
(c) Case 3                      (d) Case 4 

 

Fig. 6 True resistivity distibution. 
 

     
 (a) Back projection        (b) DART after 11 iteration 

 

Fig. 7 The reconstructed resistivity distribution for case 1. 

371



 

       
(a) Back projection         (b) DART after 11 iteration 

 

Fig. 8 The reconstructed resistivity distribution for case 2. 
 

       
(a) Back projection         (b) DART after 11 iteration 

 

Fig. 9 The reconstructed resistivity distribution for case 3. 
 

       
(a) Back projection         (b) DART after 11 iteration 

 

Fig. 10 The reconstructed resistivity distribution for case 4. 
 

From Fig. 7 to 10 are the reconstructed images of BP 
and proposed algorithm for all cases. The BP and proposed 
algorithm reveal a good performance for case 1 and 2. 
However, we can find that the proposed algorithm has the 
improved image and find more accurate resistivity than BP 
for case 3 and 4. 

In order to evaluate the  reconstruction perfomance 
more quantitatively, image error ( IE ) and correlation 
coefficient (CC) were defined as follows: 

 

ρ
ρρ −

=
ˆ

IE                                             (8) 
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−−
=
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             (9) 

 
 

Where, ρ̂  is the resistivity vector of reconstructed image , 

ρ is the resistivity vector of true image, ρ  and ρ̂  are the 
mean values of ρ and ρ̂ , respectively. It should be 
mentioned here, that a smaller IE  and CC closer to 1 
respresent good reconstruction performance. Table 1 shows 

the IEs and CCs for all cases. The IEs and CCs of proposed 
methd smaller than that of BP for all cases.  
 
  Table 1. IEsand CCs for all cases 

 Algorithm Case 1 Case 2 Case 3 Case 4

IE
BP 0.1510 0.1322 0.1795 0.1390

DART 0.1177 0.0927 0.1265 0.1145

CC
BP 0.6733 0.5427 0.5236 0.3953

DART 0.6906 0.7713 0.7597 0.6253
 

4. CONCLUSION 
 
In this paper, we propose the DART for adjacent current 
injection pattern in EIT. In the DART, new weighting 
matrices are obtained based on the interpolation of the 
between adjacent stream lines. The stream lines are 
formulated based on the assumption that the resistivity 
distribution inside the domain is homogeneous. The 
advantages of the proposed algorithm are weighting 
matrices can be pre-calculated by off-line since FEM 
meshes and stream lines are fixed a priori. So, the 
reconstruction time can be reduced significantly. And 
DART can obtain comparatively good quality image. 
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