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omAbstra
t: The noise 
an
ellation te
hnologies are useful forspee
h re
ognition and other appli
ations. There are somekind of methods for 
an
ellation of ba
kground noise. Inthis paper, The desired signals are separated from ba
kgroundnoise by using proposed PCA-ICA method (Prin
ipal Com-ponent Analysis, Independent Component Analysis). Theproposed PCA-ICA method requires several number of ob-served signals that is, the same as the number of sour
es.The noise signal 
an be removed in the same way as BSS(Blind Sour
e Separation). We have done experiments (two-observation one-sour
e one-noise, with delay) and evaluatedthe results. 1. Introdu
tionUsually, some different spee
h signals that are re
orded withPCM are mutually independent. Independent 
omponentanalysis (ICA) uses only the fa
t that �Sour
e signals aremutually independent�. On the other hand, Prin
ipal 
om-ponent analysis (PCA) 
al
ulates the 
orrelation between twosour
es and sear
hing the de
orrelation transform. These twomethods perform different result for blind sour
e separationbe
ause of differen
e of statisti
s. Figure.1 shows the his-togram of Gaussian noise and Audio signal. Audio signals
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Figure 1. Histogram of Gaussian noise and audio signal.are mostly super-gaussian distribution, and there simultane-ous distribution is shown in �gure.2 for two audio signals.We 
an re
ognize the two orthogonal axes in this s
atter plot.PCA 
an not re
ognize these two orthogonal axes, but it hasimportant fun
tion for de
orrelation pro
ess. Our resear
huses PCA-ICA method for separation of the audio sour
e sig-
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Figure 2. 5000-sample s
atter plot of two audio signals.nal from ba
kground noises.2. Problem De�nitionWe have two sour
e signals that are statisti
ally indepen-dent and their number is the same as the number of ob-servation signals. There are different attenuation when sig-nals transmit to ea
h mi
rophones from ea
h sour
es. Usu-ally, we 
all the transfer matrix as �Mixing matrix� A =�(a11; a21)T; (a12; a22)T�. Then, observation signals x =(x1;x2)T are represented asx = As: (1)Where s = (s1; s2)T is sour
e signals. We 
an �nd �Unmix-ing matrix�W = �(w11;w21)T; (w12;w22)T� easily if wehave the information about matrixA.y =Wx =WAs = A�1As = s (2)Where y = (y1;y2)T However, BSS problem has no infor-mation about mixing matrix A and sour
e signals. And theproblem assumes only that sour
e signals are mutually inde-pendent. The method are already established to solving theBSS problems [1℄.In our resear
h, we de�ned the new problem as the ob-servation signals in
lude delay. The position of mi
rophonesand sour
es are symmetri
 as shown in Figure.3. Now, wede�ne d1 as distan
e between desired signal sour
e and mi-
rophone 1, and also between noise sour
e and mi
rophone2. d2 is distan
e between desired signal sour
e and mi
ro-phone 2, and also between noise sour
e and mi
rophone 1.
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Figure 3. The problem of Blind Sour
e Separation with delay.The differen
e of samples between 
oming signals from twosour
es to ea
h mi
rophones is D. For example, at samplingfrequen
y = 11025Hz, d1 = 2m and d2 = 3.5m, the differen
eof samples D should be about 50-samples. In this problem,the observation signals x(t) = (x1(t);x2(t))T are repre-sented as below.x1(t) = a11s1(t) + a12s2(t�D) (3)x2(t) = a21s1(t�D) + a22s2(t) (4)Also this formula 
an be represented as followsx = As = � a11 a12z�Da21z�D a22 � �s1s2� (5)Figure.4 and Figure.5 show an example of the sour
e signalsand observation signals.
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Figure 4. Desired signal and noise signal3. Proposed MethodThe proposedmethod is 
onstru
ted by three steps for solvingthe de�ned problem.3.1 Delay Estimation and Syn
hronizationThe �rst step measures the number of samples of delay be-tween two observed signals by using 
ross-
orrelation mea-
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Figure 5. Two observed signals.surement. The 
orss-
orrelation is de�ned asRx1x2(�) =Xt x1(t)x2(t� �) (6)In this problem, Rx1x2 has two peaks as shown in Figure.6.These peaks imply samples of delay. Assume these peaks 
anbe measured is �1; �2. Then, we generate delayed observedsignals x�12 (t) = x2(t+ �1) and x�22 (t) = x2(t+ �2). Finally,x�1 = (x1;x�12 )T and x�2 = (x1;x�22 )T will be used forunmixing pro
edures.

Figure 6. Cross-
orrelation between x1 and x23.2 De
orrelation with PCA+ Se
ond step makes whitening matrix for x�1 and x�2 usingPCA. Here eigenve
tor e = (e1; e2) of 
ovarian
e matrixC�1x = E[x�1xT�1 ℄, and� = diag(�1; �2) is diagonal matrixof eigenvalue of C�1x . The matrixV :V = �� 12 eT (7)
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is �Whitening matrix� that 
an make un
orrelated signal. Vis used for the determining of initial value ofW.3.3 Sear
hing forW with ICAThird step sear
hes unmixing matrix W 
lassi
ally withKullba
k-Leibler divergen
e [2℄ is de�ned below.KL(W) = �H(Y;W) +Xi H(Yi;W) (8)Here, H(Y;W) is entropy of joint probability,H(Yi;W) isentropy of the marginal probability. y1 and y2 are mutuallyindependentmeans thatKL(W) is rea
hing to zero. We usedsteepest des
ent method for sear
hing optimumW. � is par-tial derivatives of approximated probability density fun
tion,�(y) = ��� logp(y1)�y1 ; � logp(y2)�y2 �T (9)and theW will be 
onverged by update rule below.Wt+1 =Wt + �(I� �(y)yT)Wt (10)IfW is unmixing matrix, unmixed signals y1;y2 should berea
hed into sour
e signals. Be
ause if 
oef�
ients of a11w11and �a21w12 is almost same, and x1, x�12 are exa
tly mat
h-ing to s1. Then s1 of unmixed signals y is 
an
elated. Theremaining output y1 or y2 rea
hes to the one of sour
e sig-nals. The same pro
edure also will be performed for x�12 .3.4 Blo
k DiagramFigure.7 shows the blo
k diagram of proposed method.

Figure 7. Blo
k diagram of proposed method.We must pay attention to the permutation problem. The twosignals are permuted by step2 and step3.

4. Experiment and EvaluationWe 
ompared our proposal method and the 
lassi
al methodfor blind sour
e separation with delay. A musi
 sour
e andGaussian-noise sour
e are used for this experiment (See Fig-ure.4). In this experiment, we de�ne the delay D = 50-samples. The separation by our proposal method with de-lay estimation exhibits better result than the 
lassi
al methodwithout delay estimation.
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Figure 8. Result: BSS by our proposal method.
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Figure 9. Result: BSS by 
lassi
al method.Figure.8 shows the result of unmixing by the proposedmethod and sour
e signal. Figure.9 is the result of the 
las-si
al method. There are obviously differen
es between twomethods results.4.1 Asymmetri
 PositionOn the another situation that the positions of mi
rophones andsour
es are asymmetri
, It will also work well. Now we de-
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�ne the asymmetri
 transfer fun
tion,x1(t) = a11s1(t�D1) + a12s2(t�D2) (11)x2(t) = a21s1(t�D3) + a22s2(t�D4) (12)Here, D1 6= D2 6= D3 6= D4. In this situation, we 
an�nd two peaks from 
ross-
orrelation (Figure.10) as same assymmetri
al situation. The noise 
an
ellation also has been
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Figure 10. Cross-
orrelation in asymmetri
al situation.performed in this situation, and a satisfa
tory result obtainedthe same as symmetri
 one.4.2 Fun
tion of PCAIn this resear
h, we dis
overed that whitening pro
ess byPCA has very important fun
tion in the 
ase of mixture withdelay makes high 
orrelation between the observation signals.Figure.11 shows s
atter plot of real situation. Assume the

Figure 11. Four s
atter plot (Sour
esignal, Observation,De
orrelation, Unmixing with ICA)Di = 0, the observation signals have only one peaks in 
ross-
orrelation. we 
an not �nd sour
es without ICA in this way.

Figure.12 shows s
atter plot without delay. However, the de-
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Figure 12. Four s
atter plot (Sour
esignal, Observation,De
orrelation, Unmixing with ICA), without delaylay should be in
luded in real situation. Then the de
orrela-tion pro
ess be
omes useful method.5. Con
lusionBlind sour
e separation is dif�
ult for 
onvoluted observationsignals [3℄ [4℄, and also for our proposed method. The 
las-si
al method 
an not separate the signals that are 
onvolutedmixture and or delay. On the other hand, our method that 
anestimate delay is more useful for the signals in
lude delay.Referen
es[1℄ A. Hyvärinen, J.Karhunen, and E. Oja, �IndependentComponent Analysis�, John Wiley and Sons, 2001.[2℄ A. J. Bell and T. J. Sejnowski, �An information-maximization approa
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h�,IEICE trans. Fundamentals, Vol.E88-A, No.12, De
em-ber 2005.[4℄ Shoko Araki, Ryo Mukai, Shoji Makino, TsuyokiNishikawa and Hiroshi Saruwatari, �The FundamentalLimitation of Frequen
y Domain Blind Sour
e Separa-tion for Convolutive Mixtures of Spee
h�, IEEE Trans-a
tions on spee
h and audio pro
essing, Vol.11, No 2,Mar
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