
On Detecting Cloud Container Failures from
Computing Utility Sequences

Yu-Shao Liu†, Hsu-Chao Lai†, Jiun-Long Huang‡, August F.Y. Chao∗
†Inst. of Computer Science and Engineering, National Yang Ming Chiao Tung University,
‡Inst. of Data Science and Engineering, National Yang Ming Chiao Tung University,

∗Taiwan Web Service Corporation,
Hsinchu, Taiwan

Email: ysl@cs.nctu.edu.tw, hsuchao.cs05g@nctu.edu.tw, jlhuang@cs.nctu.edu.tw, august.chao@twsc.io

Abstract—As the popularity of cloud platforms and container
grows rapidly, managing clouds has become an important issue.
For example, failed containers on cloud platforms would trigger
automatic restart mechanism. However, the failed containers
caused by user error are not fixable by restart, and may lead
to the loop between failure and restart. Therefore, the looping
failure will harm the overall performance of cloud. In this paper,
we propose to identify possible container failures, where the
utility behavior of containers (e.g., CPU usage, GPU usage,
I/O throughput, etc) are factored in, in a machine learning
approach. We propose a light-weight neural network EEGNet-
SE to support fast inference in real-time. In addition, EEGNet-
SE is able to distinguish dynamic relations between each utility
for different tasks. We conduct a real cloud container dataset
from Taiwan Cloud Computing (TWCC) platform. Experimental
results manifest that EEGNet-SE boosts the performance and
efficiency simultaneously, and outperforms the other state-of-the-
art methods in terms of accuracy.

Index Terms—Cloud Container Failure Detection, Neural Net-
work, Multivariate Time-series Classification

I. INTRODUCTION

Thanks to the rapid growth of network bandwidth and
computation hardware, cloud platforms have been one of the
most important technique in recent years, evident by Ama-
zon Web Services (AWS), Microsoft Azure, Google Cloud
Platform (GCP), etc. These cloud platforms usually provide
Container Compute Service (CCS), which is a containerized
working environment supporting various applications (e.g.,
online music streaming, on-demand videos, machine learning
models, Internet-of-Things, etc), such that users can easily
create, remove, or cluster containers based on their demands.
The annual revenues of AWS, and GCP have reached 13.5 and
13.1 billion USD respectively in 20201.

Managing CCS turns out to be important and essential
for cloud providers. To be more specific, software failures
causing container termination could be roughly divided into
two categories: the administrative termination and the process
failure [1]. The administrative termination resulting from in-
ternal networking issues in the clusters could be recovered by
the automatic restarting mechanism fast. However, the process
failures are caused by user error (e.g., wrong configurations

1https://techcrunch.com/2021/02/02/google-cloud-lost-5-6b-in-2020/

or requesting too much memory), and they may keep looping
between termination and restart until they are manually fixed.
As a result, one small user process failure could result in severe
performance drops of the whole platform, which potentially
brings great damage to both the cloud providers and the users.

Technically speaking, cloud providers are able to directly
access those troubled containers with authority of system
administrator for interventions. However, it is irrational to
trespass due to the user privacy issue [2]. In this regard, to
manage each container indirectly, a promising solution is to
collect the utility metrics (e.g., CPU usage, memory usage, or
network I/O throughput) of each container instance for further
analysis. Note that it is also impractical to ask human experts
to identify failures based on those utilities from thousands
of container runtime instances. Although several applications
(e.g., Prometheus2) support utility monitoring, they do not
facilitate automatic failure detection and discrimination. In this
consequence, there is an urgent need of developing intelligent
solutions for failure detection on cloud platforms.

In this paper, we formulate the failure detection problem,
namely Cloud Container Failure Detection (CCFD). Given the
Cloud Container Utility Sequences (CCUSeq), such as mem-
ory usage, CPU utilities, and I/O throughput, of a container
as time-series data, the goal of CCFD is to early predict if the
container is going to fail. The research challenges of CCFD are
two-fold. 1) Short decision time. In order to make immediate
failure alert in real-time scenario, the detection model should
not be inefficient. One possible solution is to reduce the
number of learning parameters, but it may also sacrifice the
performance. Therefore, how to strike a good balance between
performance and efficiency should be carefully examined. 2)
Complicated relations between utilities. The shape of each
CCUSeq of one container is not always identical to each
other. For example, while training a deep model with GPUs,
the virtual memory usage is stable but the GPU usage keeps
oscillating. It is probably because the data loaded to the
memory does not require further I/O but the GPUs are busy
only if they are in a training epoch. How to extract useful
information from heterogeneous shapes is an issue, which is

2Prometheus: https://prometheus.io/

©Copyright IEICE - APNOMS 2021 358



also challenging in similar multivariate time-series prediction.
To tackle CCFD, we design a neural network-based model,

namely EEGNet-SE, to efficiently and effectively profile each
container based on their behavior, i.e., the CCUSeq. Specif-
ically, for the first challenge, we notice that EEGNet [3]
is a good fit since it is a light-weight Convolution Neural
Network (CNN) model by employing depthwise separable
convolution in handling multi-channel biosignals. However,
EEGNet assumes that the relation between each channel is
static or fixed, which may limit the performance due to
the impractical assumption. Therefore, we improve it by
concatenating Squeeze-and-Excitation blocks (SE blocks) [4],
which exploit channel attention after the convolution layer in
order to recalibrate the channel relations dynamically, where
the second challenge is addressed. To evaluate the proposed
EEGNet-SE, we conduct the experiments with a real cloud
container dataset from Taiwan Cloud Computing (TWCC)
platform. EEGNet-SE outperforms state-of-the-art multivariate
time-series classification models in terms of testing accuracy.

II. RELATED WORKS

Current machine learning techniques used in cloud plat-
forms focus on resource allocation [5], privacy protection [6],
[7], and virtual machine provisioning [8]. The important failure
detection problem has not drawn machine learning research
community’s attention yet.

CCFD is a type of multivariate time-series classification
problem [9]. Multilayer Perceptron (MLP) [10] is the basic
model that stacks multiple fully connected layers and acti-
vation function to learn temporal non-linear patterns. Fully
Convolutional Neural Network (FCN) [10] conducts convolu-
tion layers and ends up with a global average pooling layer
to reduce the parameters. Residual Network (ResNet) [11]
was first designed for image classification, and further be
used for time-series data by adding residual connections to
FCN [10]. Encoder [12] introduces attention blocks to replace
the global average pooling layer in FCN for flexible and
learnable weights. Multi-scale Convolutional Neural Network
(MCNN) conducs complicated data augmentation and skip
sampling [13], which make it hard to train. t-LeNet is a time
series-specific CNN [14], including two convolution layers
and a fully connected layer with local max-pooling. Time
Convolutional Neural Network (Time-CNN) [15] applies mean
square error for loss instead of cross-entropy. Time Warping
Invariant Echo State Network (TWIESN) [16] exploits recur-
rent structures and transformation at each timestamp, so the
input space is transformed into a higher dimensional latent
space for classification. However, the above methods do not
dynamically distinguish different weights of CCUSeq for each
container, which may harm the prediction performance.

III. PROPOSED METHOD

In this section, we first formally define the Cloud Container
Failure Detection (CCFD) problem in Section III-A, and
introduce the proposed EEGNet-SE in Section III-B.

A. Problem Formulation

Let C = {c1, c2, · · · , cN} denote a set of N containers
and cn denotes the n-th container. For container cn, its
multivariate Cloud Container Utility Sequence (CCUSeq) data
is denoted as Xn = (Xn

1 , X
n
2 , · · · , Xn

M ), where Xk
m is the

CCUSeq of a specific usage m (e.g., virtual memory). Xn
m

is further defined as Xn
m = 〈xn,m1 , xn,m2 , · · · , xn,mT 〉, where

xn,mt is the measured utility value (e.g., megabytes of virtual
memory) in real values at timestamp t and T is the predefined
length of the observation time window. The whole dataset
D = {(X1, y1), (X2, y2), · · · , (XN , yN )} is a collection of
pair (Xn, yn), where yn denotes the class (i.e., label) of
container cn. For a dataset containing K classes, if Xn belongs
to the k-th class (1 ≤ k ≤ K), we adopt the one-hot encoding
technique where yn is a vector of length K and the value of
the k-th element is equal to 1 and 0 otherwise. Consequently,
given the above dataset D, the goal of Cloud Container
Failure Detection (CCFD) is to train a classifier to map those
multivariate CCUSeq Xn to a probability distribution over the
class variable yn.

B. EEGNet-SE

With regard to classifying container behavior in real-time,
we propose EEGNet-SE, which is a light-weighted neural
network to profile each container based on their comput-
ing behavior, i.e., CCUSeqs. As illustrated in Fig. 1, after
extracting time and frequency domain features from raw
CCUSeqs, we employ EEGNet [3] as our foundation due
to its Depthwise Separable Convolution [17], [18], which
is a separated but paired convolution layers that approxi-
mates original convolution layer. To support dynamic channel
attention among multiple utilities, we further improve the
EEGNet by concatenating Squeeze-and-Excitation blocks [4].
Afterwards, two-layer fully-connected layer and a softmax
layer are sequentially concatenated for classification, and we
minimize the cross-entropy loss function as the objective:

min
C∑

c=1

−tclog(sc),

where C is the number of classes. tc and sc denote the
ground truth and the predicted score of class c by EEGNet-
SE, respectively. The details of EEGNet and Squeeze-and-
Excitation blocks are introduced as follows.
EEGNet. EEGNet is widely deployed in brain computer
interface domain for classification of electroencephalography
(EEG) and other biosignals. EEGNet adopts a pair of of 1-
dimensional convolution layers to extract time domain and
frequency domain features from input signals (CCUSeqs in
our case) respectively. Afterwards, a depthwise separable
convolution layer (DepConv) [17], [18] is concatenated to
learn the latent representations of the whole signal spectrum.
DepConv consists of two sequential steps. i) Depthwise layer:
independently convolute each input channel (i.e., CCUSeq)
with a depthwise filter. ii) Pointwise layer: implement channel-
wise dot product for convolution across different CCUSeqs.

©Copyright IEICE - APNOMS 2021 359



Fig. 1. Illustration of EEGNet-SE architecture (FC denotes the fully-connected layers).

Fig. 2. Illustration of Squeeze-and-Excitation block.

Compared to the widely-used 2-dimensional convolution layer
in image processing, using 1-dimensional convolution layer as
EEGNet not only saves the amount of parameters to improve
training efficiency3, but also enhances interpretability.
Squeeze-and-Excitation Block (SE blocks). Although the
DepConv layer supports channel-wise convolution to reveal
the relationships between each CCUSeq, DepConv simply
assumes that each channel has equal importance (i.e., weight).
Nevertheless, those utilities play different roles in different
application tasks in practice. For example, CPU-bounded and
GPU-bounded applications should have different weights on
CPU and GPU utilities, respectively. Directly applying EEG-
Net on CCFD hence may not be the best fit. Hence, we make
the first attempt to integrate SE blocks with EEGNet in order
to facilitate dynamic attention weights across different utilities.

As illustrated in the upper route of Fig. 2, SE blocks
consists of a Squeeze operation and an Excitation operation
[4]. The Squeeze operation is a global average pooling layer
along the channel dimension. The Excitation operation is a
two-layered fully-connected feed forward network. The first
fully-connected layer reduces the channel dimension with a
reduction ratio γ, which is a hyperparameter, and activated
by a ELU function [19]. Experimental results in Section IV-B
show ELU outperforms other state-of-the-art activation func-
tion. The second fully-connected layer increases the dimension
with the sigmoid activation. The channel attention weights are
represented as an M -dimensional vector after computed by
SE blocks. The channel attention weights then channelwisely
weight the original input features, as shown in the lower route
in Fig. 2. With SE blocks, the weights of utilities are computed
based on their features, and hence those important utilities can
be emphasized via greater attention weights.

3The computing complexity of DepConv is O(kċ+c2), which is asymptot-
ically lower than that of conventional 2D-convolution layers O(kċ2), where
c and k are the number of channels and convolution kernels respectively [18].

In summary, we add an SE block after the DepConv layer
of EEGNet, such that important utilities under different condi-
tions can be extracted and emphasized in a machine learning
approach. Note that SE blocks have very few parameters
(roughly 1% of EEGNet). Therefore, adding SE-blocks does
not slow down the efficiency of EEGNet-SE but significant
improves performance in our experiments in Section IV-B.

IV. EXPERIMENTS

A. Experiment Setting

To evaluate the performance of the proposed EEGNet-SE,
we collect real data from Taiwan Computing Cloud (TWCC)4.
TWCC is a computation-oriented cloud platform built on the
infrastructure of a supercomputer with over 2000 NVIDIA
Tesla V100 GPUs. The CCS of TWCC supports a container-
ized GPU working environment with NVIDIA-optimized deep
learning frameworks such as TensorFlow, PyTorch, MXNet,
etc. We collect the CCUSeqs spanning from June 29th to June
30th as the training data (13,151 records of 1,282 containers),
and those sequences in the first hour of July 1st are the
testing data (561 records of 561 containers). Each container
has 6 CCUSeqs. The length of the observation time window
T is set to 60 slots, and each slot is 60 seconds long. The
goal is to classify the reason of container termination of
each container from 4 different classes: ContainerCannotRun,
Completed, Error, and OOMError. To alleviate the lack of data
comprehensibility, we follow [13], [15], [20] to apply data
augmentation technique for improving classification perfor-
mance. Specifically, we implement the Discriminative Guided
Warping with shapeDTW (DGW-sD) [21] to remain more
original features and to solve the window warping issue.

For the baseline models, we compare with state-of-the-art
deep learning models designed for the time series classifica-
tion problem [9], including CNN-based methods: MLP, FCN,
Residual Network, Encoder, MCNN, Time-CNN and an RNN-
based method: TWIESN. We repeat the experiments 10 times
and present the average results to reduce stochastic noise.

B. Experimenal Results on TWCC Dataset

Table I compares the accuracy of each method on TWCC
dataset. EEGNet-SE outperforms every baseline model either
with or without data augmentation, manifesting that the light-
weight EEGNet-SE does not sacrifice but even boosts the

4Taiwan Computing Cloud: https://www.twcc.ai/

©Copyright IEICE - APNOMS 2021 360



TABLE I
TESTING ACCURACY OF TWCC DATASET

Methods Accuracy Accuracy Parameters
(w/o Augmentation) (w/ Augmentation)

MLP 0.426 0.426 686,504
FCN 0.366 0.387 270,340

ResNet 0.356 0.392 507,396
Encoder 0.828 0.830 3,202,052
MCNN 0.426 0.426 1,368,324
t-LeNet 0.474 0.509 63,179

Time-CNN 0.511 0.535 970
TWIESN 0.799 0.801 -

LSTM 0.593 0.595 13,828
EEGNet 0.794 0.840 98,836

EEGNet-SE* 0.834 0.853 99,908

performance. It is because that we apply the SE blocks to
dynamically adjust the weights of each CCUSeq, proved
by the improvement compare to EEGNet. As expected, the
performances of almost all the methods are improved with data
augmentation. Encoder is the only competitive baseline, it may
owing to its batch normalization layers. However, EEGNet-
SE has 3 times less parameters than Encoder, leading to less
training time and faster inference ability.

Table II compares the mean and standard deviation of accu-
racy of employing different activation functions in EEGNet-
SE in training and testing phases, respectively. State-of-the-art
activation functions, including Hardswish [22], ELU (α=0.1),
ReLU6, LeakyReLU (α=0.01), are compared. The upper group
omit SE blocks and the activation functions are only im-
plemented after each convolution layer of EEGNet. SE-ELU
outperforms the other setting, manifesting that both SE blocks
and the ELU function are useful in recognizing important
utility features in CCFD. On the other hand, the widely-used
ReLU6 has worse performance because it is likely to cause
gradient vanishing or so-called the dead ReLU problem in
DepConv layers, as reported in [17].

V. CONCLUSION

In this paper, we identify the Cloud Container Failure Detec-
tion problem, and propose efficient EEGNet-SE to predict the
container failures based on their utility sequences. EEGNet-SE
employs depthwise convolution layers for approximation to re-
duce the number of parameters, and concatenate the Squeeze-
and-Excitation blocks to dynamically attend important utilities.
Experimental results on TWCC dataset manifest that EEGNet-
SE outperforms the other deep models in terms of accuracy.

ACKNOWLEDGMENT

This work is supported in part by MOST under grants 109-
2221-E-009-118-MY3, 110-2222-E-009-005-MY2, and 109-
2218-E-009-015.

REFERENCES

[1] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F. Khendek,
“Deploying microservice based applications with kubernetes: Experi-
ments and lessons learned,” in IEEE International Conference on Cloud
Computing, 2018.

TABLE II
ACCURACY OF DIFFERENT CONFIGURATIONS ON TWCC DATASET

Activation Train Test
mean (%) stdev mean (%) stdev

Hswish 0.840 0.58 0.630 12.7
ELU 0.824 0.35 0.794 6.42
ReLU6 0.849 0.72 0.640 14.54
LeakyReLU 0.841 0.58 0.579 11.54
SE-Hswish 0.863 0.69 0.618 14.47
SE-ELU 0.866 0.39 0.834 1.86
SE-ReLU6 0.862 1.12 0.535 10.17
SE-LeakyReLU 0.855 1.05 0.522 9.20

[2] M. Cinque, R. Della Corte, and A. Pecchia, “Microservices monitoring
with event logs and black box execution tracing,” IEEE Transactions on
Services Computing, 2019.

[3] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “Eegnet: a compact convolutional neural network for
eeg-based brain–computer interfaces,” Journal of Neural Engineering,
2018.

[4] G. S. J. Hu, L. Shen, “Squeeze-and-excitation networks,” in CVPR, 2018.
[5] B. Du, C. Wu, and Z. Huang, “Learning resource allocation and pricing

for cloud profit maximization,” in AAAI, 2019.
[6] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not

just privacy: Improving performance of private deep learning in mobile
cloud,” in KDD, 2018.

[7] R. Peterson, A. S. da Silva, A. Carvalho, C. Fetzer, A. Martin, and
I. Blanquer, “Vallum-med: Protecting medical data in cloud environ-
ments,” in CIKM, 2020.

[8] C. Luo, B. Qiao, X. Chen, P. Zhao, R. Yao, H. Zhang, W. Wu,
A. Zhou, and Q. Lin, “Intelligent virtual machine provisioning in cloud
computing,” in IJCAI, 2020.

[9] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller,
“Deep learning for time series classification: a review,” Data Mining
and Knowledge Discovery, 2019.

[10] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in IJCNN, 2017.

[11] K. He, X. Zhang, and S. R. J. Sunn, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[12] J. Serrà, S. Pascual, and A. Karatzoglou, “Towards a universal neural
network encoder for time series.” in International Conference of the
Catalan Association for Artificial Intelligence (CCIA), 2018.

[13] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural net-
works for time series classification,” arXiv preprint arXiv:1603.06995,
2016.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

[15] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” Journal of Systems Engineering
and Electronics, 2017.

[16] P. Tanisaro and G. Heidemann, “Time series classification using time
warping invariant echo state networks,” in IEEE ICMLA, 2016.

[17] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in CVPR, 2017.

[18] L. Kaiser, A. Gomez, and F. Chollet, “Depthwise separable convolutions
for neural machine translation,” in ICLR, 2018.

[19] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[20] B. K. Iwana and S. Uchida, “An empirical survey of data augmentation
for time series classification with neural networks,” arXiv preprint
arXiv:2007.15951, 2020.

[21] B. K. Iwana and S. Uchida, “Time series data augmentation for neural
networks by time warping with a discriminative teacher,” in ICPR, 2021.

[22] A. Howard, M. Sandler, B. Chen, W. Wang, L. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, “Searching for
mobilenetv3,” in ICCV, 2019.

©Copyright IEICE - APNOMS 2021 361


