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Abstract - In this short paper we briefly revise the criteria 

defining near and far field. After an extension of the radian 
sphere notion to finite size sources, we generalize the amplitude 
and phase criteria for arbitrary source structures. Next we  
identify with a representative example the wavelength distance 
where the near field has reached the shape of the far field 
directivity, then we quantify the difference between near and 
far field directivity in function of the position to the source. 

Index Terms — radian, directivity, amplitude, phase 

I. INTRODUCTION 

For any time harmonic electromagnetic source excited at 

frequency f with an accepted average active power P, the 

complex Poynting vector 2/∗×= HES  describes how this 

power P is distributed in the electric field E  and magnetic 

field H . Only the real part of this vector oriented radially 

away from the source corresponds to an active power 

radiated outwards, while its imaginary and transverse 

components measure mainly reactive power oscillating in 

space instead of being radiated. In what follows we propose 

to review and quantify the notions of near and far field in 

relation to the Poynting vector. 

II. THE RADIAN SHELL 

 Several regions can be defined by the field properties at a 

distance r from a reference point 0 , usually the source feed 

or the phase center. In the case of infinitesimally small 

sources such as the Hertz dipole or the Fitzgerald loop, the 

electric and magnetic field terms decaying in 1/r become 

larger than the 1/r² and 1/r³ ones from a distance r = λ/2π = 

1/k [1]. This distance defines the so-called radian sphere, 

inside which the reactive power and stored energy, 

exclusively due to 1/r² and 1/r³ terms, dominate the radiated 

power. This distance criteria does not depend on the source 

dimension, as it is infinitesimal. Still it remains valid for non 

infinitesimal field sources, as shown hereafter. 

For a collection of equivalent electric J  and magnetic M  

currents distributed on the outer surface S of a finite size 

source, possibly made of metal and dielectric parts, the E  

and H  fields at a location r  outside S are given by (1), 

where the individual contributions of the tangential and 

radial components of both currents flowing at every location 

'r  on S are integrated [2]. In (2) RJJ t
ˆ×=  and 

RMM t
ˆ×=  are the components of the total currents J  and 

M  transverse to the unit vector RRR /ˆ = , while 

( )RRJJ r
ˆˆ.=  is the radial component. The magnetic field 

)(rM  has a similar and dual expression.  

The distance where the 1/R² and 1/R³ terms are similar or 

larger in magnitude than the 1/R terms is again given by the 

condition kR ≤ 1, as can be derived from (2). The distance R 

must now be understood as the minimum value of 

')'( rrrR −=  for all possible locations 'r  on S. In other 

words, the radiated fields become dominant outside a radian 

shell surface englobing S at a distance R=1/k from it. 
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III. PHASE AND AMPLITUDE ACCURACY 

The directivity of an electromagnetic source is defined by 

(3). We choose to name “near field directivity” the right 

hand side term inside the limit for r→∞ : 

 [ ]
P

rSr
D r

2/ˆ),(Re4
lim),(

2 ⋅
= ∞→

φθπ
φθ  (3) 

For an infinitesimal dipole source [3]: 
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With other words, the near and far field directivity of an 

infinitesimal dipole are identical from r ≥ 0 to ∞.  

For finite size sources, there is a difference between the 
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Fig. 1. Geometry for far field approximations on R 
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near field directivity and its far field version, computed with 

the electric and magnetic fields given by (1) and (2), but 

where only the 1/R terms are retained and R  is replaced by 

r  (or 'ˆ rrr ⋅− ) for the amplitude (or phase) terms, 

respectively. 

In Fig. 1 we consider an observation point r  located at a 

distance r from 0  and a section S of the source containing 

the axis r0 . When R is approximated by r, for the amplitude 

terms, the largest error is measured by Dr = max(r-Rmin;Rmax-r) 

for all possible sections S of the source around the axis r0 . 

Reducing the amplitude error requires to increase r/Dr. When 

R is approximated by 'ˆ rrr ⋅−  the phase error given by (5) is 

maximum very close to where 'r  lies at the largest possible 

distance Dp, from r0  and where 'ˆ rrDpr ⋅= . From Fig. 1 it 

can be derived that :  

 ( )[ ] λλλπ /)/(
2
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prp DD
n

rnrrrRk +≥⇔≤⋅−− (5) 

The well known and widely used rule r >2D²/λ is a special 

case of (5) for n=16, where Dpr/λ can be neglected and when 

Dp can be replaced by D/2, namely when the reference point 

0  is centered in the section S of largest dimension D [3,4]. 

We show hereafter how to relate r/Dr and n to the difference 

between the near field and far field directivity. 

 

Before doing so, we emphasize that the two different 

dimensions Dr and Dp governing the amplitude and phase 

error depend on the observation point ),,( ϕθrr , especially 

and significantly for a non symmetrical source. In the case of 

the λ/4 monopole excentered on an elliptic ground plane 

shown in Fig. 2 we find for example at )0,63,4( °°= λr  that 

Dr/λ=1,15 and Dp/λ=3,5 while for )90,75,4( °°−= λr  

Dr/λ=2,85 and Dp/λ=1,5. 

This asymmetrical and elongated configuration has been 

intentionnally selected to avoid error cancellations due to 

symmetries and to enhance the positional dependence of the 

amplitude accuracy. Computations have been performed 

with FEKOTM, using double precision and a high density 

λ/15 mesh. What follows is a brief summary of many 

simulations. A first distance to consider is when all the main 

lobes of D(θ,ϕ) are present in Sr(r,θ,ϕ). It occurs as soon as 

n > 2 and r/Dr >2,5, but the maxima and minima can be 

shifted many degrees away from their far field position while 

also exhibiting large amplitude errors. The condition n≥2 is 

met from r/λ≥25 along ϕ=0° but already from r/λ≥8 along 

ϕ=90°, as illustrated in Fig. 3. 

Once the near field directivity pattern is established, one 

can measure its relative difference with the far field one for 

various ),,( ϕθrr . In Fig. 4 a summary is presented for the 

seven main peaks along ϕ=0° and ϕ=90°. The (θ,ϕ) location 

of those seven peaks is mentioned in the graph legend, and 

four of them are pointed to with arrows in Fig. 3. A relative 

accuracy of 10% (0,5dB) on the directivity amplitude 

requires r/λ between 10 to 20 along ϕ=90° (red curves) while 

r/λ between 1 and 10 suffices along ϕ=0° (green curves). 

This example illustrates the fact that the difference between 

near and far field directivity depends on the observation 

location for an asymmetrical source structure. It is also worth 

mentioning that the corresponding angular deviation of the 

peaks can reach up to 10°. Bringing this angular deviation 

down to 1° requires r/λ beyond 100.  

IV. CONCLUSION 

We first showed that the radian sphere of an infinitesimal 

source can be extended to the concept of radian shell around 

any antenna. Next we showed that the classical criteria used 

to define near and far field could be refined in presence of 

non symmetrical sources. Finally a quantitative assessment 

of the difference between near and far field has been 

presented in the challenging case of a monopole excentered 

on an elongated elliptical ground plane.  
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Fig. 4. Amplitude accuracy 

Fig. 2.  λ/4 monopole on elliptical ground plane 

Fig. 3. Near to far field formation 
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