
A Flexible vCPE Framework to Enable Dynamic 

Service Function Chaining Using P4 Switches 
Muthuraman Elangovan 

 EECS IGP  

National Yang Ming Chiao Tung University  

Hsinchu, Taiwan 

muthuraman.e@hotmail.com 

 

Chien Chen 

Department of CS 

National Yang Ming Chiao Tung University 

Hsinchu, Taiwan 

chienchen@cs.nctu.edu.tw 

 

Jyh-Cheng Chen 

Department of CS 

National Yang Ming Chiao Tung University  

Hsinchu, Taiwan 

jcc@cs.nctu.edu.tw 

Abstract – The Virtual Customer Premises Equipment  

(vCPE) technology has recently emerged to reduce telecom 

operators’ OPEX and CAPEX.  It evolved from Network 

Function Virtualization (NFV) and Software Defined 

Networking (SDN) technologies.  This paper proposes a flexible 

vCPE framework to enable dynamic chaining of Virtual 

Network Functions (VNF) by using Programmable Protocol-

independent Packet Processors (P4) switches.  It can obtain a 

much better packet processing performance compared to the 

pure software vCPE solution.  The OpenFlow switch provides 

similar hardware acceleration, but it executes the flow tables in 

a fixed order, and it is not possible to skip the flow tables, which 

are not subscribed to by a customer. However, P4, the domain-

specific language used to describe how to process packets on a 

data plane (DP), gives more flexibility than the OpenFlow. It 

provides a way to avoid the fixed flow table execution order and 

can introduce a new service on the fly. Our flexible vCPE 

framework can be achieved by the synergies between an NFV 

controller on the cloud and a P4 switch at the edge.  In this paper, 

an Open Network Operating System (ONOS) controller with 

P4Runtime is used as a VNF control plane and a P4 Behavioral 

Model (BMv2) software switch is used as a DP.  Finally, dynamic 

function chaining is realized using three possible 

implementations, viz. multi-instance, clone, and resubmit. P4 

language is used for the implementations.  Experimental results 

show that a multi-instance based solution is better than a 

resubmit and clone. 

Keywords – SDN, NFV, P4, ONOS, vCPE, VNF, BMv2 

I. INTRODUCTION 

Recent research focuses on evolving the network 
infrastructures based on Software Defined Networking (SDN) 
[1]-[4] and Network Function Virtualization (NFV) [7]-[9]. 
The core concept of SDN is separating the control and data 
plane operations that enable smart control on the switch and 
giving a vantage point for innovation in network industries.  

NFV was introduced by Telco operators. It is a marvelous 
choice for innovation in the service delivery arena. It is used 
to reduce the coupling between Network Function (NF) and 
hardware devices. For example, legacy network services at 
customer premises are based on a hardware appliance called 
Physical Customer Premises Equipment (P-CPE).  This P-CPE 
includes all functions that are required to provide services for 
an end-user such as Network Address Translation (NAT), 
Firewall (FW), Quality-of-Service (QoS), etc.  But the 
demands and requirements from the end-user are more diverse 
and unique.  Adding new services to fulfill end-user needs 
requires that the service providers replace new P-CPEs. It also 
needs extra deployment labor cost, which takes a lot of supply 
chain effort and time. All these operations increase their OPEX 
and CAPEX. Due to high competition, the service providers 
can’t increase their subscription fees for those additional 

expenses. Thus, they are forced to find a way to reduce their 
OPEX and CAPEX.    

The vCPE [10] concept has emerged as a solution for 
improved delivery of NF, which helps to move hardware 
functionality to the cloud as a software module. It also helps 
service providers introduce new services faster without rolling 
out existing hardware appliances located on the customer 
premises. It can provide Dynamic Service Function Chaining 
(DSFC) using SDN. However, pure software-based vCPE 
cannot achieve the needed throughput and latency for today’s 
network services. Therefore, people [12] have explored the 
possibility of separating the control and data functions of 
vCPE and using OpenFlow hardware switches to improve the 
packets’ processing speed in the data plan of vCPE. 

The authors in [12] proposed a multiple OpenFlow [5][6] 
tables mechanism to enable VNFs in vCPE with faster packet 
processing in the data plane (DP). OpenFlow has provided 
programmability of the network control plane, but the network 
DP is still rigid, without the flexibility that vCPE is looking 
for. In [12], each table represents one VNF service. Each table 
has fixed header match fields like a 5-tuple entity. By default, 
the packet processing pipeline of OpenFlow starts with the first 
VNF table to the end of VNF in order. In [12], the dynamic 
chaining of VNF is achieved by adding a high-priority rule 
such as Goto action in such a way that we can disable the 
number of VNFs for a customer. In case a large number of 
customers like to design it by their own packet processing 
order of VNF, then it requires a numbered Goto action rule on 
each enabled VNF table. Furthermore, at a later time, suppose 
a customer wants to either enable some more VNFs or change 
their execution order; this requires a number of table entries. It 
will consume a lot of memory, and it makes for a complex 
packet processing pipeline of VNF.  

Instead of using OpenFlow hardware switches in the DP of 
vCPE, this paper proposes a flexible framework of 
Programmable Protocol-independent Packet Processors (P4) 
[16], [17] switches to DSFC in vCPE. P4 switches give a way 
to reconfigurable NF tables in the DP of vCPE. P4, a high-level 
domain-specific language, describes how to process packets 
on a DP, and gives more flexibility than the OpenFlow 
protocol. We use the programmability of P4 switches to 
provide the high-performance and flexibility to vCPE. For 
example, a customer chooses the list of VNF from a number 
of VNF supported by the vCPE device, and they can specify 
the execution order of chosen VNF. In this way, the DP can 
apply a number of VNF based on the customer’s chosen in 
order. Moreover, P4 provides a way to reconfigure the 
forwarding pipeline table in a P4-capable device and introduce 
a new protocol parser at runtime. Therefore, we can add or 
remove a list of VNF tables to achieve faster rolling out of the 
new services of vCPE in the field.  

©Copyright IEICE - APNOMS 2021 342



There are a number of related works done to support DSFC 
using multiple P4 programs in a single physical DP. It is 
achieved by virtualization, which involves virtualizing the 
multiple network contexts with different VNFs chaining. 
Hyper4 [13] proposed portable virtualization of DP in order to 
run independently. However, this approach requires more 
match-action stages and limits the number of primitive actions. 
P4Visor [14] proposed a method to merge different P4 
programs into one and deploy them as a single pipeline of a 
device. This approach [14] only focused on reducing resource 
consumption by removing the redundancy of the parser and 
tables while merging different P4 programs into one. 
Unfortunately, all customers’ network traffic has to go through 
all tables. P4SC [15] proposed a method to convert the given 
service function chaining request into a P4 Program. It 
leveraged a Least Common Subsequence (LCS) algorithm to 
merge multiple NF chains into a single chain to minimize the 
number of pipeline table instances. FASE [23] proposed a 
method to reduce redundant SFs by using re-circulation and it 
will take a longer completion time in the worst case. 

To provide DSFC in vCPE, for the n number of VNFs, {v1, 
v2, v3, …, vn), a limited set of combinations of VNF chaining 
can be predefined. Then, the customers have to choose their 
packet processing pipelines from among them. However, the 
customer is limited to designing any chaining of packet 
processing pipelines from n VNFs. Therefore, in this paper we 
assume that our flexible vCPE framework will support any 
combinations of n VNFs. Since the number of combinations 
could reach at most S(n) = n! (1/0! + 1/1! + … + 1/(n-1)!)  with 
n NFs, such as 3  VNFs  {v1, v2, v3}, there exist six possible 
combinations of three VNFs: {v1, v2, v3}, {v1, v3, v2}, {v2, v1, 
v3}, {v2, v3, v1}, {v3, v1, v2}, {v3, v2, v1}; six possible 
combinations of two VNFs: {v1, v2}, {v1, v3}, {v2, v1}, {v2, v3}, 
{v3, v1}, {v3, v2}; and three possible combinations of a single 
VNF: {v1}, {v2}, {v3}. Therefore, the parallel requires S (3) = 
15 pipeline table instances in order to satisfy all customer 
requests. To merge pipeline tables with S(n) combination of n 
VNFs, the P4SC could produce a very complex P4 control 
flow to chain them. For example, merging the chaining of 
combination of three VNFs, the result of LCS of {v1, v2, v3} 
and {v1, v3, v2} is either v1 v2 or v1 v3, then the pipeline table in 
P4 after merging could be v1→v2→v3→d2 or v1→v3→v2→ d3 

where d denotes the duplicate table and the suffix represents a 
VNF. Furthermore, merging {v2, v1, v3} with the chain 
v1→v2→v3→d2, the result of LCS could be either v2 v3 or v1 v3, 
then the resultant chain would be v1 →v2→d1→v3→d2 and 
there exist three duplicate tables. Likewise, if we merge more 
combination of VNFs then the output of P4SC P4 program 
[22] is more complex control blocks, and the length of the P4 
pipeline table increases due to chaining the multiple 
combinations of VNFs based on LCS. Since the P4 grammar 
rule doesn’t allow calling the same table multiple times in the 
P4 packet processing pipeline, it will force P4SC to produce 
the overhead in terms of duplicate P4 tables which will 
increase the length of pipeline tables. Therefore, each VNF 
chain could experience more packet processing delay while 
traveling through the pipeline. 

Motivated by the inefficient complex chaining of VNFs in 
Openflow and P4SC, we aim to chain the number of VNFs 

more effectively under the vCPE environment. In general, we 
need at least n2 VNF table instances to satisfy all possible 
combinations of n VNFs. In our design, with n2 VNF table 
instances, we assign a unique bitmap identifier for each VNF. 
The design of our own scheme called multi-instance, depicted 

in Fig. 1, requires 9 table instances for 15 DSFCs of 3 VNFs. 
Since the P4 grammar rule doesn’t allow calling the same table 
multiple times in the P4 packet processing pipeline, we 
duplicate two more table instances with different names for 
each VNF. Each customer can subscribe to a list of VNFs and 
specify the execution order of VNFs. Each customer’s network 
traffic is applied over multiple VNF tables based on the stream 
of bitmap value on the user-defined metadata in P4. The packet 
processing pipeline of a customer will be based on their 
subscription of NFs, as shown in Fig. 1. In this way, we can 
skip the execution of unsubscribed VNF tables. Therefore, the 
pipeline delay will be exactly same as the number of NFs each 
customer is subscribed to. The customer can enable/disable 
one or more of their subscriptions and also change the 
execution order at runtime without modifying the running 
program in DP. 

Fig. 1. Example of multi-instance approach   

To further reduce the number of tables, we invest the DSFC 
in vCPE implementations based on the P4 primitives resubmit, 
and clone which require only n table instances with n NFs.  

 This paper evaluates the proposed framework model by 

using P4 BMv2 [18] with P4Runtime software switch as a DP. 

P4Runtime is a communication protocol between control and 

DP that is used to manipulate the DP operations. The ONOS 

[11], [19] is used as the SDN control plane. It offers high-

availability, scale-out, and distributed management of network 

elements. Experimental results demonstrate that the multi-

instance pipeline model achieves better throughput and 

pipeline latency of DSFC than the resubmit and clone pipeline 

model. 

The rest of this paper is organized as follows. Section II 
discusses the system design and implementation. Section III 
introduces the DSFC. Section IV presents the relevant 
experimental results. Section V draws conclusions and 
describes future works. 

II. SYSTEM DESIGN AND IMPLEMENTATION 

In this section, we present a brief overview of our system 
design and implementation of the control plane application. 

The control plane application of the proposed vCPE is 
written in java on top of the ONOS SDN controller core 
module. The service provider can define the forwarding 
pipeline of the vCPE device, and compile it using the P4 
compiler (p4c). The compiled output for the BMv2 software 
switch files p4info and json are given to the ONOS controller, 
either ONOS compile-time or run time through a vCPE CLI 
command. The ONOS controller will initiate a gRPC 
connection over TCP/P4Runtime protocol to the vCPE device. 
On successful connection establishment, the ONOS will 
update the forwarding pipeline of that device. The simple P4 
vCPE dynamic service function deployment model is depicted 

©Copyright IEICE - APNOMS 2021 343



in Fig. 2. The vCPE device can be deployed at the edge of the 
service provider’s network. 

  

Fig. 2. Simple vCPE Dynamic service function deployment model 

  The customer can subscribe to the list of VNF services 
and also specify the order of VNF execution through the 
dashboard. Once the subscription is done, the ONOS controller 
will update the required P4 flow entries on to the 
corresponding edge device. In this way, each customer has 
their subscription of VNF services. The VNF packet 
processing is based on each customer’s subscriptions. Each 
green area in Fig. 2 is considered a customer local network 
domain, and their subscriptions and execution orders are 
shown on top of the link.  

The service provider can easily implement new services or 
remove existing services to/from the vCPE device through our 
vCPE CLI command. The service provider has to rewrite the 
forwarding pipeline of a vCPE device and pass it to the vCPE 
CLI command. The vCPE control plane application will 
update the bitmap identifier for a newly added VNF and the 
disabled VNF service bitmap identifier will be kept as reserve. 
Finally, the vCPE control plane application will reconfigure 
the forwarding pipeline of the vCPE device. The 
reconfiguration and populating of the flow table entries takes 
a reasonable amount of network downtime. 

III. DYNAMIC SERVICE FUNCTION CHAINING 

In this section, we first present the classification of 
customer traffic in P4 for different NFV subscriptions. After 
that, we propose a dynamic service function chaining for 
packet pipeline processing. Finally, we show the various 
possibilities of the dynamic service function chaining model in 
P4.   

A. Classification of Customer Traffic 

Fig. 3. VNF bitmap value and classification table format 

Before discussing the classification of customer traffic, we 
explain VNF bitmap identifiers and table execution orders. As 
displayed in Fig. 3, there are a total of three VNFs, which are 
NAT, FW, and QoS, and each can be subscribed to by 
customers. Each VNF has a unique bitmap identifier, which 
is used to make a big-chunk of bitmap value for each customer 

traffic classification. The VNF table execution always starts 
from the right to the left of the bitmap value. We also define 
one more bitmap identifier 11b (End-of-VNF), to terminate 
the execution of VNF. In this example with three VNFs, we 
require 2bits of value to encode a VNF uniquely. 

The classification of customer traffic is done based on the 
source IPv4 address of incoming network traffic, depicted in 
Fig. 3. The flow entry of the classification table includes the 
IPv4 address of the customer as a match field, and the 
subscribed VNF bitmap value VNF_Bitmap as an action 
parameter to set the user-defined metadata for each customer’s 
packet accordingly. For example, in Fig. 3, the Customer-1’s 
VNF_Bitmap value is 11100100b, which denotes that the 
customer is subscribed to NAT, FW, and QoS, and the table 
execution order is also the same as a subscription order. 

B. DSFC 

Fig. 4 depicts the overall DSFC for packet pipeline 
processing over multiple VNF tables.  

Fig. 4. Example of DSFC packet processing pipeline flow 

In this vCPE implementation, we have three VNFs, which 
are NAT, FW, and QoS. First, we explain the flow tables 
shown in Fig. 4 to evaluate DSFC. The in-built table 
vnf_classifier_tbl is used to get the customer’s VNF 
subscription bitmap value. The nat_tbl is a stateless NAT table 
that translates the source or destination IPV4 address. The 
fw_tbl  is a matched packet marked as drop that then terminates 
the execution of the remaining list of VNFs. The qos_tbl is a 
state full QoS that implements QoS based on the P4 meter 
primitive. The in-built table routing_tbl is a simple L3 routing 
table. The VNF validation process gets the VNF by right-
shifting the shift bits from VNF_Bitmap.  The right-shifted 
value could be any one VNF and applies the corresponding 
VNF table. This process will continue until we met a condition 
like VNF_END, dropping a packet, etc.  

C. VNF Pipeline 

In this paper, we propose three VNF pipeline models called 
resubmit, clone, and multi-instance using the P4 switch. We 
used  P4 V1Model architecture to evaluate our proposed 
DSFC. P4 V1Model has six pipeline controls, namely Parser, 
VerifyChecksum, Ingress, Egress, ComputeChecksum, and 
Deparser. In P4 V1model, the programmable Match+Action 
pipeline can be done at the Ingress and Egress control. There 
is a challenge to implement the packet processing pipeline over 
multiple VNF tables. Currently, P4 grammar doesn’t allow 
invoking the same table more than one time in the 
Match+Action pipeline because of potential looping issues 
while doing the grammatical checks. We can solve this issue 
by using P4 primitives like resubmit, clone, and recirculate. 
The recirculate primitive is used to recirculate the packet to 
the Parser, Ingress control and so on once the packet finishes 

©Copyright IEICE - APNOMS 2021 344



the pipeline processing which is not fit for DSFC. We define a 
model called multi-instance model which creates multiple 
table instances for a VNF, where each instance is uniquely 
identified by its P4 table identifier. The P4 table identifier is 
used to update the flow rule entry on the specific table. 

1) DSFC based on resubmit: The P4 resubmit primitive 

function should be called from Ingress control and accepts a 

list of parameters like user-defined metadata. In this pipeline 

model, we use a single table instance for a VNF. The DSFC 

is implemented in Ingress control, as illustrated in Fig. 5.  

In Fig. 5, Classification denotes the vnf_classifier_tbl; the 

“C” indicates conditional DSFC algorithm; and nat1, fw1, and 

qos1 represent the VNF tables of NAT, FW, and QoS 

respectively. When a packet is entered into the Ingress, we 

check the packet’s standard metadata, whether that packet 

instance is marked with a resubmit flag or not. If the packet 

wasn’t marked, we then apply the Classification table to mark 

the customer’s VNF subscription bitmap. The DSFC 

algorithm will right-shift the shift-bits from the bitmap and 

then apply the corresponding VNF table. Once the table 

execution is done, we then check the remaining bitmap, 

whether it reaches VNF_END or not. If the bitmap reaches 

VNF_END, then the packet will move to the Egress control. 

Otherwise, the packet will be resubmitted to process the 

remaining list of VNFs. The user-defined metadata keeps that 

packet’s updated VNF bitmap value in the cycle.  

Fig. 5. DSFC based on P4 resubmit primitive function 

2) DSFC based on clone: P4 has two cloning primitives, 

namely clone, and clone3. Both primitive functions are used 

to create a new copy of the packet. The original and cloned 

packets are processed independently. There are two types of 

cloning supported by P4 specifications, which are Ingress-to-

Egress (I2E) and Egress-to-Egress (E2E). We rely on clone3 

and E2E type of cloning, which is used to execute the Egress 

control, repeatedly, as in Fig. 6. This pipeline model is also 

similar to resubmit, but the major difference is that  it avoids 

reparsing the header fields.  

Fig. 6. DSFC based on P4 clone primitive function 

In this model, the VNF subscription bitmap, routing, and 

cloning specific information get it in the Ingress control. The 

VNF bitmap processing is the same as the resubmit pipeline 

model. If more VNFs are to be processed, then the packet will 

be cloned and marked the original packet to drop. In this 

pipeline model, we use a single table instance for each VNF. 

3) DSFC based on multi-instance: The DSFC placed in 

the Ingress Match+Action pipeline is illustrated in Fig. 7. We 

create multiple table instances of each VNF table like nat1, 

nat2, and so on. The traversal of the VNF subscription bitmap 

is the same as resubmit and clone, but the VNF execution is 

different. In this model, we define multiple instances of a 

VNF and execute sequential but separate table instances of a 

VNF. For example, if the value of the VNF bitmap is FW, 

NAT, and QoS, then the table executions will be fw1, nat2, 

and qos3.  

This pipeline model will apply a number of VNFs 

sequentially unlike the resubmit and clone pipeline models. 

However, the drawback of the multi-instance model is that the 

number of VNF tables needed will be increased by n-fold, 

where n is the number of VNFs supported by the service 

provider. For example, in Fig. 7, where the service provider 

provisions three VNFs: NAT, FW, and QoS, we need to create 

9 table instances in total. Since we can’t predict the customer 

subscription and execution order, we can’t assume different 

table instances will have different table sizes. We have to 

assign the maximal table size for all of the VNF table 

instances initially. We will end up with unusable memory in 

some table instances. Eventually it will introduce table 

fragmentation issues. Fortunately, we can still take advantage 

of the field-reconfigurable P4 switch to adjust the table size 

as necessary. 

Fig. 7. DSFC based on multi-instance 

IV. PERFORMANCE EVALUATION 

Our development environment for vCPE includes a P4 
BMv2 software switch as a DP, and the control plane is a suite 
with an ONOS SDN controller. We explain our results with a 
discussion about the three proposed DSFC pipeline models of 
vCPE.  

Fig. 8. Evaluation setup 

A. Evaluation Setup  

We run the vCPE in Ubuntu 16.04 OS on a commodity 
Intel PC. On that server, the P4 BMv2 software switch with 
P4Runtime support was installed and run. We configured the 
BMv2 switch without logging support. The switches, hosts, 

©Copyright IEICE - APNOMS 2021 345



and links are constructed using Mininet [20] running on the 
same server. The source code version of ONOS is 2.1.0 [19], 
which is also running on the same server. 

We adopt a simple topology and flow entry for our Proof 
of Concept (PoC) implementation with link speed of hosts and 
switch set as 10Mbps, displayed in Fig. 8. The two P4 nodes 
S1 and S2 in the access region are gateways that connect the 
hosts. The forwarding pipeline of S1 and S2 is written in the 
P4_16 programming language and compiled using the p4c 
compiler. The node S1 has a DSFC forwarding pipeline that 
connects with iperf3 [21] client nodes H1-H3. The node S1 
forwarding pipelines like the resubmit, clone, and multi-
instance VNF pipeline models were configured at runtime by 
using the vCPEApp CLI command vcpe-update. The 
command vcpe-update takes vCPE device identifier, p4info, 
and json as input parameters. The node S2 has a simple routing 
forwarding pipeline that connects with iperf3 server nodes 
H4~H6. Both nodes S1 and S2 have the same type of packet 
header fields parsing (Ethernet, IPv4, and UDP), but the 
implementation of the Ingress and Egress controls is different 
based on the forwarding pipeline model. 

B. Throughput and Packet loss  

In this section, three performance metrics– 1VNF pipeline 
(from H1 to H4), 2VNFs pipeline (from H2 to H5), and 3 
VNFs pipeline (from H3 to H6) – are evaluated using three 
proposed pipeline models. The configuration of test cases 
consists of frame size and transmission rate. UDP traffic is 
used in all test cases of the three pipeline models. The frame 
sizes are 64, 128, 256, 512, and 1024 bytes, and the 
transmission rates at 10Mbps. Here we report the mean 
throughput in Megabits per second (Mbps) and packet loss 
with 95% confidence interval over 5 runs.  

Fig. 9 and Fig. 10 shows the throughput and packet loss 
rate of the proposed three DSFC pipeline models. The 
throughput increases as packet size increases. On the contrary, 
the packet loss rate decreases as packet size increases. Since 
we use a BMv2 software switch with a fixed packet processing 
speed, with a constant transmission rate of 10Mbps, the 

number of packets to be processed increases as the packet size 
increases. Therefore, the smaller packet size cases would 
experience a great amount of packet loss and affect the average 
throughput. Since the 3VNF case needs more processing 
power than 2VNF, and 2VNF needs more processing power 
than 1VNF, the mean throughput for a packet size less than 
256 shows the decrease of throughput from 1VNF to 3VNF. 
With respect to the throughput, the packets over 256 bytes and 
three pipeline models achieve the same line-rate, which shows 
that software switch is able to process a number of packets 
with packet size 256 bytes or larger. 

For the packet with size of 64 bytes and one VNF test, all 
of the three pipeline models show different throughput, but not 
much difference because the number of conditional statements 
is used differently on each pipeline model which is poorly 
translated by p4c. For the packet with size of 64 bytes and three 
VNF tests, the multi-instance pipeline model has better 
throughput than resubmit (~19%) and clone (~16%). 
Regarding data loss, for the packet with size of 64 bytes and 
three VNF tests, the multi-instance pipeline model has lost rate 
less than resubmit (~37%) and clone (~33%). For the packet 
with size 128 bytes and three VNF tests, the multi-instance 
pipeline model still has better throughput than resubmit 
(~20%) and clone (~7%). 

For the resubmit VNF pipeline model and three VNF tests, 
a packet is required to go through resubmit two times, reparse 
the packet header fields in the Parser control three times, and 
process the Ingress control three times. The resubmitted packet 
is queued to the resubmit queue, and it has a high-priority and 
is executed first. There is a long delay in processing the newly 
received packet at the ingress queue. In this pipeline model 
test, we observed the number of packets dropped on both 
resubmit and ingress queues with a large amount of traffic. 
Thus, the performance penalty is due to the packet processing 
delay, which happened an increased number of times while 
processing the Parser and Ingress controls. If the number of 
subscribed VNFs increases with multiple different chaining of 
VNF, then this pipeline model can’t handle the heavy network 

(a) Throughput of resubmit (b) Throughput of clone  (c) Throughput of  multi-instance 

Fig. 9. Throughput of DSFC  

(a) Packet loss of resubmit  (b) Packet loss of clone  (c)  Packet loss of multi-instance 

Fig. 10. Packet loss of DSFC 

©Copyright IEICE - APNOMS 2021 346



traffic due to pipeline processing delay, and the performance 
will be dropped further. 

 For clone VNF pipeline model, in the case of three VNF 
tests, a packet is cloned two times, which results in executing 
the Egress control two times. In this method, the starvation will 
happen at the egress queue like the resubmit pipeline model. 
In the experiment herein, the results demonstrate that the multi-
instance based DSFC pipeline gives better performance. The 
multi-instance pipeline model can support dynamic chaining 
of multiple VNFs without extra overheads like resubmit and 
clone. 

C. Pipeline Latency 

Here we report the results of the packet processing pipeline 
latency of the proposed DSFC pipeline model using iperf3 and 
UDP traffic. We chose the frame size as 1024 bytes because 
we experience a large number of packets drops while doing the 
measurement of frame size 64 and 128 bytes.   

Fig. 11. Packet processing pipeline latency of DSFC 

Fig. 11 shows the mean packet processing pipeline latency 
with 95% confidence interval over 5 runs for three DSFC VNF 
pipeline models. The 3VNF table processing takes higher 
latency than the 2VNF and 1VNF, and likewise for 2VNF and 
1VNF. In the test of 1VNF, multi-instance’s latency is better 
than that of resubmit (~3%) and clone (~5%) because the 
multi-instance pipeline model required minimal conditional 
statements to traverse the VNF_Bitmap. But, the resubmit and 
clone models need more conditional statements than the multi-
instance pipeline model. The p4c compiler will poorly 
translate the written P4 code into DP representation if more 
conditional statements are used. With respect to the 
measurement of efficiency for the 3VNF table pipeline 
operation, the multi-instance pipeline model gives better 
latency compared to resubmit (~13%) and clone (~27%) since 
the multi-instance pipeline model doesn’t have to process the 
Parser, Ingress, and Egress controls multiple times compared 
to resubmit and clone. 

V. CONCLUSION AND FUTURE WORK 

We have described the concept, design, implementation, 
and evaluation of our proposed flexible vCPE framework. We 
can enable multiple VNFs and dynamically chain each VNF 
via the programmability of P4. The service provider can easily 
place the vCPE device at the edge of the network. This 
implementation focuses on P4-capable devices with respect to 
the following aspects: DSFC based on multiple VNF tables, 
handling thousands of customer network traffic with different 
subscription of services, saving the number of table entries, 
and getting better throughput and latency with hardware DP. 
Three pipeline test cases are considered to evaluate three VNF 
tables. According to the test results, the multi-instance pipeline 
model gives better performance than resubmit and clone. In the 
near future, the proposed framework model will be 

implemented in P4-capable hardware switch platforms and 
expand the number of VNFs on real-time network traffic.  

REFERENCES 

[1] O. N. Foundation, “Software-defined networking: The new norm for 
networks”, ONF White Paper, vol. 2, pp. 2-6, 2012. 

[2] N.McKeown, “Software-defined networking”, INFOCOM keynote 
talk, vol. 17, no.2, pp. 30-32, 2009. 

[3] N.Feamaster, J.Rexfore, and E.zegura, “The road to SDN”, ACM 
SIGCOMM Computer communication Review, vol. 44, pp. 87-98, Apr 
2014. 

[4] Kreutz, F.M.V.Ramos, P.E. Verissimo, C.E. Rothenberg, 
S.Azodolmoky, and S. Uhlig, “Software-defined networking: A 
comprehensive survey”, Proceeding of the IEEE, vol. 103, pp. 14-76, 
Jan 2015. 

[5] N.McKeown, T.Anderson, H.Balakrishnan, G.Parulkar, L.Peterson, J. 
Rexford, S.Shenker, and J. Turner, “OpenFlow: enabling innovation in 
campus networks”, ACM SIGCOMM Computer Communication 
Review, vol. 38, pp. 69-74, Mar. 2008. 

[6] B.Pfaff, B. Lantz, B. Heller, et al., “Openflow Switch Specification, 
version 1.3.0”, Open Networking Foundation, 2012. 

[7] M. Chiosi, D. Calrke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. 
Khan, M.Faragano, C. Cui, H. Deng, et al,. “Network functions 
virtualization: An introduction, benefits, enablers, challenges and call 
for action”, SDN and OpenFlow world Congress, pp. 22-24, 2012. 

[8] NFV ISG, “Network Functions Virtualization (NFV); Virtual Network 
Functions Architecture”, Tech. Rep. GS NFV-SWQ 001 V1.1.1, ETSI, 
Dec. 2014. 

[9] R. Mijumbi, J. Serrat, J.L. Gorricho, N.Bouten, F.D.Turck, and R. 
Boutaba, “Network function virtualization: State-of-the-art and 
research challenges”, IEEE Comunications Surveys & Tutorials, vol. 
18, no. 1, pp. 236-262, 2016. 

[10] P. Minoves, O.Frendved, B.Peng, A. Mackarel, and D. Wilson, “Virtual 
CPE: Enhancing CPE’s deployment and operations through 
virtualization”, 4th IEEE International Conference on Cloud Computing 
Technology and Science Proceedings, IEEE, Dec. 2012. 

[11] P. Berde et al., “ONOS: Towards an open distributed SDN OS”, 
Proceeding of 3rd Workshop Hot Topics Software Defined Networking 
(HotSDN), pp. 1-6, 2014. 

[12] N.-F. Huang, C.-H. Li, C.-C. Chen, I.-H. Hsu, C.-C. Li, and C.-H. Chen, 
“A novel vCPE framework for enabling virtual network functions with 
multiple flow tables architecture in SDN switches”, Network 
Operations and Management Symposium (APNOMS), 2017 19th 
AsiaPacific, IEEE, 2017.  

[13] David Hancock and Jacobus van der Merwe, “Hyper4: Using P4 to 
virtualize the programmable data plane”, In CoNEXT ’16, pages 35-49, 
2016. 

[14] Peng Zheng, Theophilus Benson, and Chengchen Hu, “P4Visor: 
Lightweight Virtualization and Composition Primitives for Building 
and Testing Modular Programs”, in Proceedings of the 14th 
International Conference on Emerging Networking Experiments and 
Technologies, ser. CoNEXT ’18. New York, NY, USA: ACM,  pp. 98-
111, 2018. 

[15] X. Chen, D. Zhang, X. Wang, K. Zhu, and H.Zhou, “P4SC: Towards 
high-performance service function chain implementation on the P4-
capable device”, in Proceedings IFIP/IEEE International Symposium 
on Integrated Network Management (IM), pp. 1-9, Apr. 2019. 

[16] The P4 Language Consortium. The P4 Language Specification. 
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.pdf 

[17] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,C. 
Schlesinger, D. Talayco, A. Vahdat, G. Varghese, & D. Walker 
"Programming Protocol-Independent Packet Processors”, CoRR 
abs/1312.1719 (2013). 

[18] BMv2. https://gitbub.com/p4lang/behavioral-model 

[19] ONOS Source. https://github.com/opennetworkinglab/onos 

[20] Mininet. http://mininet.org 

[21] ESnet, Lawrence Berkeley National Laboratory. iPerf3. 
http://software.es.net/iperf 

[22] P4SC. https://github.com/P4SC/p4sc 

[23] Lee.J, Ko.H, Lee. H, & Pack.S “Flow-Aware Service Function 
Embedding Algorithm in Programmable Data Plane”, IEEE Access 
2021. 

©Copyright IEICE - APNOMS 2021 347


