The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

Complex Multiplier suited for FPGA structure

Keiichi Satoh', Jubee Tada®, Kenta Yamaguchi3 , and Yasutaka Tamura *
'Yamagata University Graduate School of Science and Engineering, Department of System and Information Engineering
234y amagata University Graduate School of Science and Engineering, Department of Informatics
4-3-16, Johnan, Yonezawa, Yamagata, 992-8510, Japan
E-mail: 'keiichisatol@mail.goo.ne.jp

Abstract: In this paper, we propose complex multiplier
suited for FPGA structure to achieve higher performance
and lower cost. The complex multiplier is based on LUT
(Look-Up-Table) and carry-chain from FPGA structure, we
utilize Booth algorithm for partial product generation and
Wallace tree utilizing effectively LUTs and carry-chains in
the FPGA structure for the partial products compression to
design it. We design Wallace trees of various types utilizing
LUTs and carry-chains, the complex multipliers
implemented the trees are synthesized by synthesis tool.
Consequently, the proposed complex multipliers are
superior to one synthesized by operator (‘*’, ‘+°, and ‘-°)
from VHDL description for both the path delay and the
scale.

1. Introduction

FPGA (Field Programmable Gate Array) is used in
various applications such as signal processing,
communication, and control. In these applications, complex
multiplications are used to process in algorithms such as
FFT[1], DCT[2], and convolution in the frequency
domain[3], and so on. These computations require more
and more computational power to process various signal
processing in higher speed. In addition, it is desirable for
hardware implementation in FPGA to implement more
compact and higher performance complex multipliers for
effective parallel operation.

Complex multiplication is composed of four
multiplications, one addition, and one subtraction. Thus,
four multipliers and two adders are required for a complex
multiplier. Therefore, a complex multiplier requires more
circuit resources and becomes longer path delay than a
normal multiplier.

In this paper, first, we represent main structure in Xilinx
Virtex-5 FPGA. Second we represent complex
multiplication computation, subsequently, we represent the
structure for partial product generation and partial product
compression suited for the FPGA. Fourth, we discuss the
comparison result from the performance and the scale for
the designed complex multipliers of various types. Finally,
we conclude from the result.

2. FPGA structure

FPGA (Xilinx Co.) basic structure is composed of
CLBs (Configurable Logic Block) and wire matrixes, also
the CLB is roughly composed of LUTSs, carry-chain, and
FFs (Flip Flop) [4]. The CLB structure is shown in Figure
1. Arbitrary combinational logics are realized by the LUT’s
data input and output pattern. Also, carry-chain is dedicated
wire connected to LUT output ports to perform high-speed
carry propagation, which is used to generate operational
and logic circuits.

Virtex-5 FPGA has six-inputs and one-output LUTs; the
single LUT can output one-bit data from six-input data. If
this resource is properly used for the circuit design, we may
be possible to obtain more compact and higher performance
circuit. Thus, it is important for circuit suited for FPGA to
consider the structure; we remark the structure according to
the consideration. Subsequently, we select Virtex-5 as the
target device and attempt to design 18-bit complex

multiplier.
6-LUT J W%D_H—'
1 »

i<
N
|
N

’E% I .

6-LUT, [

=) —
el g

0 A\

Figure 1. CLB structure in Virtex-5 FPGA.

'

FFf—=

—o

0

Il
1
1
\
|
\

3. Complex multiplier structure

With complex data (4 + jB) and (C + jD) (j : imaginary
number), the complex multiplication is represented as
follows.

(A+ jB)YC+ jD)=AC—-BD+ j(AD+BC). (1)

AC — BD and AD + BC are the product for real and
imaginary part, respectively. Also, schematic diagram of
complex multiplier is shown in Figure 2. As four the
products are generated, complex multiplier is required of
four multipliers and two adders. Figure 3. is concrete block
diagram for complex multiplier. A description will be given
in due order below about partial product generation and
compression operation to explain the structure in Figure 3.

ac—bd

Jjlad+bc)

Figure 2. The schematic diagram of complex multiplier.

341

Multiplicands
a b
b b

B(}qth selector

Multipliers

Q/'ﬁ;};@;{ﬁ;&i;&@;"\l
! L]
1 D S S

Wallace tree

J N_Booth selector
1

‘ Booth encoder‘ ‘ Booth encoder‘

Wallace tree

i 13

| cPA | | cpa

! ;

Real part=ac-bd Imaginary part =ad + bc
Figure 3. Block diagram for complex multiplier.

Y Partial products generation

Partial products compression

3-1. Partial product generation

For the partial products generation, we introduce Booth
algorithm[5] to reduce the number of partial products for
above “ac”, “bd”, “ad”, and “bc” by roughly one half,
respectively. For multiplication of 2’s complement numbers,
the two-bit encoding using this algorithm scans a triplet of
bits. When multiplier B is divided into groups of two bits,
and the algorithm is applied to this group of divided bits.
The multiplier B in 2’s complement representation is
expressed by

n-2
B=-b,,2""+) (b;27))
j=0

= (bn—3 + bn—Z - 2bn—l)2”72 + (bn—S + bn—4 - mes)2”74 t+ee
+ (b, +b, , —2b,_)2 -t (b +b, —2b)2°

n/2-1

= Z (bzk—l + bzk - 2b2k+1)22k~
k=0
Where, n is an even number, b, represents the sign bit

b , and b_; =0. The product Z(=AB) is then given by

n/2-1
Z=AB = Y A(b,, , +b,, -
=0

j=

2b2/+1)22j ’ G)

where, replace by, + by + by with Pj

W)
j=0

P; has a value of 0,£1, and +2 by Table 1., which
depends on the values of the adjacent three bits on the
multiplier by,.;, by, and by, The Booth encoders generate
the three bits.

The multiplicand A is computed by the P, Booth
selectors generate the partial products; however, the
products “bd” is regarded as negative number from
equation (1). Thus, the Booth selector corresponding “bd”
is improved to allow generating of negative partial product
bits. It is N_Booth selector in Figure 3. Also the Booth
encoding table is shown in Table 2.

Table 1. 2-bit Booth encoding. Table 2. Booth encoding for
negative partial products.

ba| bz |baz] P/, AP/ by bz | bzl P/ AP/
0 0 0 0 0 0 0 0 0 0
0 0 1 1 A 0 0 1 -1 -A
0 1 0 1 A 0 1 0 -1 -A
0 1 1 2 2A 0 1 1 -2 —2A
1 0 0 -2 —2A 0 0 2 2A
1 0 1 -1 -A 0 1 A
1 1 0 -1 -A 1 0 A
1 1 1 0 0 1 1 0 0
Booth algorithm is applied to equation (1); the

representation is described following as:

AC-BD+ j(AD+BC)

/21 n/2-1 ®)
_ 2j 2j
= ZA(CZj—l +6y;=205,,)27 + ZB(_de—l —d,; +2d,;,,)2
=0 =0
n/2-1 y n/2-1 y
+j(ZA(dzH +d2/ _2d2/+1)2 T+ ZB(CZH +¢,; _202/+1)2).
=0 =

From above the equation, the number of partial products
for either real or imaginary part becomes generally
approximately N+2 when the data length is N-bit. However,
as the two of sign extension bit series[5] are constant, these
can become form of single sign extension bit series by
summing in advance. Thus, the number of partial products
is N+1, respectively. Figure 4. is the concrete partial
products layout map for imaginary part’s computation when
the data length is 6-bit, where c; and ¢; indicate a partial
product bit introduced to add 1 at the LSB position in the j-
th partial product if the encoded result is a negative value.
Also, ¢;and ¢; are decided by the Booth encoders, these are
summed by Half Adders in the Booth selectors after the
multiplier bits were encoded by the Booth encoders,

subsequently the sum(¢,) and carry(c,) bits are generated,
respectively.

b, by by by b by:B
X & &G & & ¢ ¢:C
Lo G50 920 A0 oo
42 di2 G2 B2 D2 2 D2 Go
i oGt ag B G g Qoa G
2 Lol o 1 1 <2

T

1010110

l}{earmnge the partial products

Sign extension bits — constant

Ps0Ps0 Pao P3o P20 Pro Poo
%090 Qa0 B0 G 910 Y0
<

Number of partial products : N+1

Figure 4. partial products layout map for 6-bit complex
multiplication.
3-2. Compression operation

It is efficient for compression operation of the generated
partial products to utilize Wallace tree[5]. Generally
Wallace tree utilized 4:2-compressors[5] are known an
approach to effectively reduce partial products in VLSI.
However, utilizing 4:2-compressors in FPGA may be
inefficient because the FPGA structure is based on six-input
LUT. In other words, the FPGA resources may not be
effectively consume to utilize 4:2-compressors when the
characteristics of FPGA structure were considered. As an
approach to design Wallace tree suited for FPGA, we
propose utilization of 6:3-compressor and carry-chain. The
schematic diagram of 6:3-compressor structure is shown in

342

Figure 5. Also, Figure 6. is the compression process when
six 6-bit partial products are compressed by six 6:3-
COMPressors.

PP.P.P:P Py

Q00000
°q'd%dtdd*d

& | e T |
| e6LUT || eLUT || 6LUT |
I I I
o A [i(}\rryl l Carry0 L Sum
Carryl Carry0 Sum <o A []
X2#2 x2Fl x)i

Figure 5. 6:3-compressor (left: schematic diagram for
partial products compression, right: the internal structure).

252423222120
000000
000000
000000
000000
000000
000000

1 6:3-compressor X6
000000
AAAAAA
fededededodod

Figure 6. compression process by 6:3-compressors.

6-bit partial product X 6

The 6:3-compressor is based on the six inputs LUT; it
has six input ports and three output ports. Concretely, it
contains the three output bit patterns corresponding to six
input bit patterns. Thus, 6:3-compressor is composed of
three six-input LUTs. By utilizing the unit, six partial
product bits input from the same bit position can be added
without carry from the first lower bit. Thus, the
compression operation is performed by data access to the
LUT. Consequently, the path delay reduces efficiently. In
addition, the FPGA resources are effectively utilized every
the LUT, the resource utilization cost will be lower.

On the other hand, we utilize carry-chain to generate an
adder, the carry-chain is wusually utilized by HDL
description of ‘+’ operator.

We utilize 6:3-compressors and carry-chains and design
Wallace trees of various types. The designed tree types are
classified into following three types; first type is the tree
composed of 6:3-compressors only (6:3 type). Second type
is the tree composed of carry-chains only (Carry-chain
type). And the third type is the tree utilized both 6:3-
compressors and carry-chains (Hybrid type). Concretely,
Hybrid type is the tree to compress the partial products by
utilizing 6:3-compressors and carry-chains alternately. In
addition, this is classified into the two types that the tree
compresses the generated partial products by the order of
beginning 6:3-compressors and next carry-chains (Hybrid-
JSormer type) and the order of beginning carry-chains and
next 6:3-compressors (Hybrid-latter type). The schematic
diagrams of abovementioned Wallace trees for 18-bit
complex multiplier are shown into Fig.7. In the tree of a)
and d), Full Adders are utilized because the number of
partial products in the after-compression stage tree stage is
three. Also, CPA stands for Carry Propagate Adder; carry-
chain is utilized to construct it.

343

b) Carry-chain-type

CPA

To CPA

To CPA

¢) Hybrid-former-type d) Hybrid-latter-type
Figure 7. The schematic diagram of the proposed type’s
Wallace trees.

4. Design

We design the complex multipliers according to Fig.3 by
implementing abovementioned trees. And the design
environment is as follows.

+ HDL (Hardware Description Language) : VHDL

+ Design tool : Xilinx, ISE version 9.1.03i

+ Simulator : Mentor Graphics, ModelSimXE 6.2¢

+ Target device : Virtex-5 - XC5VLX220-2FF1760

5. Experimental results

Subsequently, we synthesize the complex multipliers by
the parameters setting of “Optimization Goal: Speed” and
“Optimization Effort: Normal” in the synthesis tool. And
the path delay and the scale are compared from the
synthesis results. First, we compare complex multipliers
implementing 6:3-type tree and tree composed of 4:2-
compressors only to confirm the effectiveness of 6:3-
compressor in the FPGA. 4:2 compressor is a compressor
which is often utilized in ASIC design. The result is shown
in Table 3.

Table 3. Comparison of 6:3 and 4:2-compressor only tree

Complex multiplier structure| Number of LUTs

Path delay[ns]

6:3 compressor 1605

5.62

4:2 compreossor 1749

9.68

The path delay and the scale (number of LUT) for 6:3-
type complex multiplier is approximately 42% shorter and
9% smaller than another one. Thus, 6:3-compressor type
tree is effectively utilized the FPGA resources because 6:3-
compressor is the matched structure for the FPGA,
additionally 6:3-compressor doesn’t utilize the carry from
the first lower bit. On the other hand, the path delay for 4:2
compressor’s one is longer. 4:2 compressor contains five-
input and three-output ports[S] (see Figure 8) because it
utilizes the carry (Carry,) from the first lower bit to
perform the compression operation. However, the carry is
dependently generated by the first lower partial product bits
(Wo~Zy) . Thus, the structure placed two the LUTs in series

are required because 4:2-compressor can not struct with
one-stage’s LUT in the FPGA. Consequently, longer path
delay is necessarily generated in the FPGA.

vy

]

4:2-compressor. W, XY, Z, Carry,,

: L#V ¥ v VY
[6-LUT || 6-LUT || 6-LUT |

Carry, Carry, Sum

Figure 8. 4:2 compressor implemented in the FPGA

Next, we compare abovementioned type’s complex
multipliers and ones generated utilizing logic blocks and
embedded multipliers (DSP48Es) in FPGA by the ‘+’ and
“*> operators in HDL description. The comparison for the
scale and the path delay are shown in Figure 9. and Figure
10., respectively.

Consequently, the path delay for 6:3-fype complex
multiplier is the shortest and the scale for Hybrid-latter type
complex multiplier is the smallest in the compared with all
the complex multipliers, respectively. Next, the path delay
and the scale for the complex multipliers designed utilizing
the proposed type’s trees are relatively compared with ones
generated by the ‘“+’ and ‘*’ operators. Consequently, 6:3
type complex multiplier are approximately 42% shorter and
20% smaller than logic block type (no use DSP48Es),
moreover the path delay is approximately 16% faster than
DSP48 type, respectively. Carry-chain type, Hybrid-
Jformer type, and Hybrid-latter type complex multipliers are
approximately 5% shorter and 36% smaller, 19% shorter
and 24% smaller, and 18% shorter and 42% smaller than
logic block type, respectively.

*' operator type using logic block

4:2 type

6:3 type

Hybrid-former type

Complex multiplier type

Carry—chain type

Hybrid-latter type 1169
.

0 500 1500 2000 2500

1000
Number of LUT

Figure 9. Comparison for the scale (Number of utilized
LUTs).

*' operator type using logic block
4:2 type
carry chain only
Hybrid-latter type
Hybrid—former type

* operator type using DSP48E

Complex multiplier type

6:3 type

0.00 2.00 6.00 8.00 10.00 12.00

400
Path delay[ns]

Figure 10. Comparison for the path delay.

344

In addition, FPGA resources are effectively utilized every
the LUT, the resource utilization cost is expected to become
lower. From abovementioned, we mention the following
considerations.

6:3 type complex multiplier becomes larger scale in
order to utilize the LUTs for all the units to construct the
tree, whereas, the LUT-to-LUT connection from the tree
structure accelerates to reduce the path delay because 6:3-
compressors match the FPGA structure. Consequently, the
complex multiplier can obtain the highest performance.

In the Carry-chain type complex multiplier, it is
considered that many the LUTs are relatively utilized to
construct the adder containing the carry-chain synthesized
by '+' operator. Consequently, the scale is no minimum in
the other types. Also, the ‘“carry-chain”-to-“carry-chain”
connection is inefficient because carry signal generated by
the adder is transferred to the carry-chain in the next adder.
Consequently longer carry propagation is performed, and
the path delay may be longer.

In the Hybrid type, the LUTs and the carry-chains are
alternately utilized. However, the different is the frequency
to utilize the LUT. From Figure 9., Hybrid-former type’s
LUT utilization is more than another one. Thus, it becomes
larger scale than another one. On the other hand, as Hybrid-
latter type’s ome utilizes carry-chain and less the LUTs
comparing with another one, the path delay and the scale is
balanced. Thus, low-cost complex multiplier can construct.

6. Conclusion

We consider complex multiplier suited for FPGA
contained six-input LUTs and design paying attention to
resources in the FPGA structure.

From above the result, utilizing LUT based 6:3-
compressors and carry-chains are efficient to construct
Wallace tree suited for FPGA. This is a result that FPGA
resources are effectively utilized because the designed
structures fitted for FPGA’s structure. Also, when the
complex multipliers utilized 6:3-comporessors and carry-
chains are utilized in the FPGA, in case of performance
serious consideration and in case of cost serious
consideration are suitable to utilize 6:3-type and Hybrid-
latter-type complex multiplier for designing higher
performance and lower cost HW architecture for the FPGA.

References

[1] Steven W. Smith ,“Digital Signal Processing: A
Practical Guide for Engineers and Scientists - chapter9
%)&lications of the DFT”, p180-184, Newnes, Sept.

2] X. Shao and S. G. Johnson, “Type-II/Ill DCT/DST
algorithms with reduced number of arithmetic
operations,” arXiv.org e-Print archive, p.
arXiv:cs.DS/0703150, Mar. 2007.

3] K.Satoh, J.Tada, H.Yanagida, and Y.tamura, ‘“Parallel
Image Reconstruction Operation by Dedicated
Hardware for Three-Dimensional Ultrasound Imaging”,
pp.1522-1525, Proc. of IEEE UFFC, Nov. 2007

[4] Xilinx Co.,” Xcell journal vol.58.59”, 2007 Spring.

[51 Vojin G. Oklobdzija, “THE COMPUTER
ENGINEERING HANDBOOK?”, CRC PRESS.

