
Deadline-Constrained Static Mapping of Parallelizable Tasks on  
Manycore Architectures 

 
Yining Xu        Ittetsu Taniguchi        Hiroyuki Tomiyama 

Graduate School of Science and Engineering, Ritsumeikan University 
1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan 

 
Abstract: This paper proposes a static task map-
ping technique for manycore architectures. The 
technique tries to minimize the number of cores 
while satisfying deadline constraints of individu-
al tasks.  

Keywords-- task mapping, manycore 
SoCs, embedded systems 

 

1.  Introduction 
Multicore/manycore architectures have been 
becoming popular not only in high-performance 
computing areas but also in embedded compu-
ting ones. In order to fully utilize the potential 
performance of manycore architectures, it is im-
portant to map tasks onto cores considering both 
intra-task parallelism and inter-task parallelism, 
and several research efforts on such task map-
ping have been made so far [1]-[4]. 

This paper proposes a new task mapping tech-
nique which minimizes the number of cores, 
while satisfying deadline constraints of individu-
al tasks. The proposed technique can reduce the 
area and energy consumption of the manycore 
SoCs. This work differs from existing ones [1]- 
[5] in several ways. The works in [1]-[3] do not 
take into account deadline constraints, while this 
work does. The work in [4] takes into account 
deadline constraints for periodic tasks, while this 
work assumes not only periodic tasks but also 
aperiodic and sporadic tasks. 

The rest of this paper is organized as follows. 
Section 2 proposes the mapping technique and 
Section 3 shows experiments. Section 4 con-
cludes this paper. 

2.  The Proposed Mapping Technique 
Our task mapping technique is based on integer 
linear programming (ILP). 

2.1.  Target System Model 
This work assumes an embedded system where 
multiple tasks run on multiple cores. Each core 
has a deadline constraint, and runs repeatedly on 
a periodic, aperiodic or sporadic manner. A task 
has data-parallelism and can be executed on mul-
tiple cores. Tasks are statically assigned to cores 
at design time, and do not migrate from core to 
core at runtime. No new task is installed at 
runtime. 

2.2.  Problem Definition 
The objective of our task mapping problem is to 
find the minimum number of cores which satis-
fies deadline constraints. 

Let �����  be a 0-1 decision variable. ����� 
becomes 1 if task i is mapped to core j, otherwise 
0. Each task must be assigned at least one core. 
Therefore, the following formula must hold. 

∀�, ∑ ������ > 0  (1) 

Let 
�����  denote a 0-1 variable, which be-
comes 1 if task i is assigned k cores. 
�����  is a 
dependent variable of �����  and is derived as 
follows. 

∀�, ∑ � ∙ 
������ = ∑ ������   (2) 

Let ������
��  be the deadline of task i, and let 
������ denote the execution time of task i in case 
k cores are assigned to the task. We assume that 
������
��  and ������  are given a priori. Then, 
the deadline constraint is formulated as follows. 

∀�, ∑ ������ ∙ 
������ ≤ ������
��  (3) 

The 31st International Technical Conference on Circuits/Systems,
                    Computers and Communications (ITC-CSCC 2016)

33



Let ������ be a 0-1 constant, describing inter-
task parallelism. ������  is 1 if tasks i1 and i2 
need to be executed in parallel, otherwise 0. If 
������ is 1, the two tasks must be assigned to 
different cores. Therefore, the following formula 
must hold. 

∀�1, �2, �,  ������ + ������ + ������ < 3  (4) 

Let ����  denote a 0-1 variable, whose value 
becomes 1 if core j is assigned to at least one 
task, otherwise 0. ����  is a dependent variable 
of ����� and is derived as follows. 

∀�, ���� = � 1 if ∑ ������ > 0
0 otherwise   (5) 

Then, our objective function is defined as fol-
lows. 

As shown above, the task mapping problem is 
now formally defined. The objective is minimi-
zation of (6) under constraints (1)-(5). 

2.3.  Solution Approach 

The above formulas are linear except formula (5). 
Although formula (5) is not linear, it can be easi-
ly linearized by a simple transformation tech-
nique. Therefore, the mapping problem can be 
solved with commodity ILP solver software such 
as IBM’s CPLEX. 
 

3.  Experiments 

3.1.  Experimental Setups 

No previous work on task mapping is directly 
comparable to this work because the problem 
definitions are different. For example, the work 
in [1] tries to maximize the throughput perfor-
mance under a given number of cores without 
considering deadlines. On the other hand, work 
tries to minimize the number of cores under 
deadline constraints. Although the problem defi-
nitions are different, we compare this work with 
the one in [1] in the following manner. First, we 

find the minimum number of cores with this 
work. Then, under the obtained number of cores, 
we run the work in [1]. Then, we compare the 
two techniques in terms of the number of dead-
line misses, throughput performance and core 
utilization. 

We use the same task set as  [1], which in-
cludes eight tasks as shown in Figure 1. We vary 
the tightness of deadline constraints using pa-
rameter d as follows. 

������
�� = 1 − (1 − min�(������)) × �  (7) 

We test six cases with different d values, i.e., 
� = 0, 0.5, 0.75, 0.875, 0.9375, 1 . When � = 0 , 
there is no deadline constraint. On the ther hand, 
when � = 1, the constraints are the tightest. In 
order to solve the ILP problems, we run IBM’s 
CPLEX 12.5 on Intel Core i7-264M (2 cores, 4 
threads, 8GB memory). 

3.2.  Results 

The experimental results are shown in Table 1. 
The first column denotes the tightness of dead-
line constraints, and the second one denotes the 
number of cores obtained by the proposed tech-
nique. The third and fourth columns show the 
number of tasks that miss deadline constraints 
with the existing work [1] and this work, respec-
tively. Although the work in [1] does not consid-
er deadlines, no task misses in our experiments. 
This issue needs to be investigated in more detail 
in future.  

The fifth and sixth columns show the average 
execution times of the tasks. Recall that this 
work tries to satisfy the deadlines, and once sat-
isfied, this work does not further minimize the 
execution times. Therefore, the average perfor-
mance (i.e., throughput) is up to 27% worse than 
the existing work [1]. Note that this does not 
mean that this work is worse from a viewpoint of 
real-time embedded systems. The most important 
requirement in real-time system design is to sat-
isfy the deadline constraints, and the next priori-
ties are energy consumption, cost and so on. In 

Minimize: ∑ �����   (6) 

34



many cases, it is not necessary to maximize the 
average throughput performance. 

If we consider energy consumption, our exper-
imental results imply that this work is better than 
the work in [1]. The last two columns in Table 1 
show the total active time of cores. For example, 
when a task runs on two cores in three time units, 
the active time is six time units. The experi-
mental results show that this work reduces the 

total active time of the cores by up to 27%. This 
implies a significant reduction in energy con-
sumption. 
 

4.  Summary 
This paper proposed a task mapping technique 
for manycore architectures. The proposed tech-
nique minimizes the number of cores under 

Table 1. Experimental results 
  # tasks missed average execution time of tasks total active time of cores 

d #cores [1] this work [1] this work [1] this work 

0 3 0/8 0/8 1.000 1.000 
0% 

8.00 8.00 
0% 

0.5 10 0/8 0/8 0.348 0.442 
+27.1% 

9.45 9.55 
+1.0% 

0.75 24 0/8 0/8 0.165 0.204 
+23.7% 

10.55 10.71 
+0.2% 

0.875 40 0/8 0/8 0.124 0.142 
+14.7% 

14.23 12.06 
�15.3% 

0.9375 112 0/8 0/8 0.090 0.099 
+9.8% 

25.57 18.65 
�27.1% 

1 640 0/8 0/8 0.062 0.062 
0% 

63.20 63.20 
0% 

 

 
Figure 1. Execution times of tasks 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128 256

No
rm

ali
ze

d e
xe

cu
tio

n 
tim

e

Number of cores

water-nsquared
radix
ocean_non_contiguous
ocean_contiguous
lu_non_contiguous
lu_contiguous
cholesky
barnes

35



deadline constraints. The experimental results 
demonstrate the effectiveness of this work 
against existing work. 

Our current technique takes no account of dy-
namic behaviors such as caches and resource 
conflicts among parallel tasks. These should be 
incorporated in future. 
 

Acknowledgments 

This work is in part supported by KAKENHI 
15H02680. 
 

References 

[1] I. Taniguchi, J. Kaida, T. Hieda, Y. Hara-
Azumi, and H. Tomiyama, “Static mapping 
with dynamic switching of multiple data-
parallel applications on embedded many-
core SoCs,” IEICE Trans. on Information 
and Systems, Nov. 2014. 

[2] S. Ramaswamy, S. Sapatnekar, and P. 
Banerjee, “A framework for exploiting task 
and data parallelism on distributed memory 
multicomputers,” IEEE Trans. Parallel and 
Distributed Systems, Nov. 1997. 

[3] N. Vydyanathan, S. Krishnamoorthy, G. 
Sabin, U. Catalyurek, T. Kurc, P. Sa-
dayappan, and J. Saltz, “An integrated ap-
proach to locality-conscious processor allo-
cation and scheduling of mixed-parallel ap-
plications,” IEEE Trans. Parallel and Dis-
tributed Systems, Aug. 2009. 

[4] H. Yang and S. Ha, “ILP based data parallel 
multi-task mapping/scheduling technique 
for MPSoC,” International SoC Design 
Conference, 2008. 

36


