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Abstract: The convergence and density evolution of a low 
complexity MIMO detection based on belief propagation 
over a ring-type pair-wise graph is considered for binary 
input. The algorithm has been originally proposed in [1], 
where the convergence for Gaussian input have been 
analyzed. Here, we extend the convergence analysis to 
binary data and provide an asymptotic performance in 
terms of BER and SINR via density evolution analysis. 
 

1.  Detection Algorithm 

System Model: A Gaussian MIMO system with a 
constant NM channel matrix H (N  M) is modeled by 
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where x is M1 transmitted data symbol vector, n is N1 
noise vector, y is N1 received signal vector and hm is the 
mth column of H. n is assumed to be complex Gaussian 
with mean 0 and covariance E[nnH] = 2I. Each element of 
x is usually a 2m-ary symbol drawn from a finite alphabet 
set  of size 2m, such as QPSK or 16QAM. 

Detection algorithm: Our start point is the one in [1], 
especially the BP over the ring-type pair-wise graph, for 
which the algorithm effectively a forward-backward 
recursion. The graphical model is shown in Fig.1, over 
which the BP algorithm is summarized as follows. BP over 
the ring-type pair-wise graph (Forward-backward 
recursion) [1]: Given the messages in the previous iteration, 
k→i(xi), it is recursively updated for all j as 
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The message update is repeated by a pre-defined number or 
until the messages do not change any more and, finally, the 
belief is obtained by 
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In (1) and (2), ()M is one-base modulo-M operation. Since it 
is awkward to use every time, we will omit it later on. In 
this algorithm we used only factor to variable node message, 
k→i(xi), since there is only two factor nodes connected to a 
variable node such that variable nodes simply pass the 
incoming message to the opposite side. In (2), the 
translation function, ),|(~

1|1  jjjj yxxp , is based on the 
conditional MMSE estimator of xj given xj1. Defining the 
conditional MMSE estimator of xj given xi as 
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and applying it to the received signal vector y, we have 
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Note that 2
j|i = aj|i,j. In the truncated signal model in (4), we 

assume the noise + interference, nj|i, to be a Gaussian, from 
which the translation function is given by 
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where ‘~’ on top of the conditional functions in (8) and (9) 
indicate that they are given by Gaussian density and 
CN(x;a,b) mean the complex Gaussian density with mean a 
and variance b. 
 

2. Convergence for Binary Input 

2. 1 Message passing for binary input 

For binary input, the message can be summarized 
by a scalar, i.e., the LLR. Define the message and a priori 
LLR as 
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Then, the forward recursion in (2), together with (14), can 
be expressed as  
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Where the function  cx;  of x with a parameter c as 
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where we denote the real and imaginary part of a complex 
variable as superscript (R) and (I), respectively, for notational 
simplicity. The non-linear function  cx;  in (17) has the 

following properties. 
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ii)   xcx    1 |;|  (obvious from i)) 
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iii)  cx;  is a monotonic function of x. (either 

increasing if c > 0 or decreasing if c < 0) 
iv)   ccxx 2;lim    (Saturation) 
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2. 2 Convergence Proof 

We first consider the following lemma. 
 
Lemma 1: Let f(x) be a function with the following two 
properties 
i) f(x) is a monotonic (either increasing or decreasing) 

function defined on (　,). 
ii)   xxf    1|| , where f(x) = df(x)/dx. 

Then, the followings hold  
iii) The equation,   xxf  , has a unique solution. 

iv) Let xs be the solution of f(x) = x. Let xk for k = 1, 2, 3… 
be a sequence obtained by successively applying f 
starting from an initial value x0, i.e., xk = f(xk-1). Then, 
for any x0, xk approaches to xs as k  . 

v) Let g(x) = cf(xa)+b for some real values a and b and 
1 c +1. The properties i) to iv) also hold for g(x). 

 
From lemma 1, one can prove the convergence of the 
forward-backward recursion for binary input as follows. 
 
Theorem 2: The forward and backward recursion in (18) for 
binary input converges to a unique fixed point as iteration 
goes to infinity. 
 

3.  Density Evolution Analysis 

Assuming the channel matrix H and the noise power 2 are 
fixed and the channel is used many times across a 
codeword, we develop the density evolution of messages 
between neighboring nodes. In channel coding context, the 
density evolution in an iterative decoder assumes all-zero 
sequence is sent and the LLR mean is tracked with the 
number of iterations, assuming the LLR is Gaussian with its 
variance being the same as its mean. The density evolution 
used in channel decoding assumes the same, even though 
the approach is different. In this section, we will also 
assume the LLRs are Gaussian and will track their mean 
and variance. The differences here from those in iterative 
channel decoding are that 1) the mean and variance have to 
be tracked along the ring, where the message of each node 
has different statistics and, hence, 2) we cannot assume all-
zero input since the statistics of the current message, lj 1　 j, 
depends not only on the background noise but also on the 
other data. Fortunately, symmetry holds for binary data and 
the message depends largely on the previous data only so 
that one can proceed as follows: Under symmetry, we 
denote the mean and variance of lj-1j as mj|j-1xj and vj|j-1, 
where both mj|j-1 and vj|j-1 are non-negative and the mean 
mj|j-1xj has the same sign as that of xj. In this definition, 
mj|j 1　  can be interpreted as a reliability of lj-1j. Then, 
supposing that xj = +1, we evaluate (mj|j-1, vj|j-1) for given 
(mj-1|j-2, vj-1|j-2) by averaging over all possible combination 

of xj-1, x{j,j-1} (x excluding xj and xj-1) and n. Due to page 
limitation, we omit the details of the density evolution. 
 

4.  Numerical Results 

Fig.1 compares the BER curves obtained via density 
evolution and its lower bound obtained by the SINR bound 
in (47) with that obtained by simulation, which is the same 
as those in [1] without channel coding. The figure shows 
that (1) the BER obtained via density evolution matches 
perfectly to the simulation results and (2) the BER bound is 
quite tight showing the estimation error from the 
previous/next nodes has negligible effect especially for 
binary input. Fig.2 shows the average SINR averaged over 
the same set of random channels, where one can see that 
approximately 1.7 dB SINR gain over MMSE receivers. 
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Fig.1 Bit error rate performance  

 

Fig.2 Average SINR 
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