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Abstract—Derived from Helmholtz wave equation, the disper-
sion relation describes the temporal and spatial behaviors of a
wave in a given electromagnetic medium. In general, this relation
can be calculated using either driven mode analysis or eigen mode
analysis. In this paper, the two approaches are compared using an
example of a periodic leaky-wave antenna. An interpretation for
the complex frequencies that arise from the eigen mode approach
is given based on the general concept of mapping between two
complex planes, namely the complex frequency plane and the
complex propagation constant plane. It is shown that the complex
frequency dispersion relation gives information on the transient
response of the electromagnetic structure under test. Moreover,
this paper shows that the results of the two approaches are
independent and provide complementary information about the
structure under test.

Index Terms—Complex frequency, complex propagation con-
stant, dispersion relation, periodic leaky-wave antenna.

I. INTRODUCTION

The dispersion relation is a fundamental electromagnetic
relation that characterizes propagation in various structures,
such as transmission lines, waveguides, photonic crystals,
traveling-wave tubes, etc. This relation is commonly used to
study the bands of temporal frequencies at which a given
structure can operate. It also provides information on the
energy dissipation in a given medium, and on the dispersion,
hence its name. A common form of visualizing the dispersion
relation is the ω − β diagram [1]. On such a diagram, and
at a specific frequency of interest (ω), one can read out the
value of the propagation constant. A pure imaginary value of
the propagation constant (real-valued β) means propagation
with no loss, a complex value means propagation with at-
tenuation, and a pure real value (imaginary-valued β) means
no propagation. In rare situations, the dispersion relation is
plotted with complex temporal frequencies (complex-valued
ω). It is not straightforward to see how such information
can be used since we know that all sources exciting any
electromagnetic structure will be associated with real-valued
temporal frequencies. This issue is discussed using an example
of a periodic leaky wave antenna P-LWA.

II. COMPLEX FREQUENCY DISPERSION RELATION OF A

P-LWA

The design procedure of a P-LWA is given in [2]. The P-
LWA antenna radiation pattern is scanned by changing the
frequency over the entire space. The design is based on a
unit cell that consists of a series and a shunt resonators. For
optimum radiation through all scanning angles, the resonant
frequency and the quality factor of both resonators have
to be equal [2]. A circuit model is used at the first stage
of the design, then the lumped components are converted
to a distributed microstrip implementation. No matter how
accurate the circuit model is, the final microstrip layout must
be validated. This is usually done by the use of full wave
electromagnetic simulations. There are two approaches for this
validation, as shown in the appendix of [2].

The first approach is to cascade a sufficiently large number
of its unit cells, then excite the whole structure from both ends
with even and odd symmetric fields. This is called drivenmode
approach. The even mode analysis gives the parameters of the
series resonator, while the odd mode gives those of the shunt
resonator. This approach of the unit cell validation has two
disadvantages: First, it is sensitive to the number of cells. If the
number of cells is too small, then periodicity is not precisely
accounted for, and if the number is too large, the parameters
calculated become of the whole structure and do not represent
the unit cell any more. Second, the computation time is high
since the simulated structure consists of multiple replicas of
the unit cell.

The second approach for unit cell validation and parameter
extraction is based on the eigen mode analysis, where the unit
cell is analyzed in a source free situation but with periodic
boundary conditions applied at its ends. The advantage of
the eigen approach is that only one unit cell needs to be
analyzed, so it is time efficient compared to the drivenmode
approach. However, in the eigen approach the actual sources
are not defined and the wave equation is solved in a source-
free situation. The problem is described by an eigen equation
where the temporal frequency is the eigen value and the fields
are the associated eigen vectors. In such a setup, the solution
can yield complex temporal frequencies (eigenvalues). In a
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(a) (b)

Fig. 1. Dispersion diagram of the CRLH-PLWA in [2] computed by the two approaches indicated in Section II: (a) Complex propagation constant vs. real
temporal frequency (drivenmode computation), (b) Complex temporal frequency vs. pure imaginary propagation constant (eigenmode computation).

practical operation, the antenna is excited by a source with
a real-valued temporal frequency. This paper addresses the
following questions: What is the physical meaning of the
imaginary part of the temporal frequency? And how exactly
is it related to the radiation mechanism?

To be more specific, consider the example of the CRLH-
PLWA discussed in [2]. The antenna is designed to operate
in the bandwidth from 9 to 11 GHz. The radiation pattern is
scanned from endfire to backfire through broadside based on
the frequency of operation. The broadside frequency, at which
the series and shunt resonators are exactly at resonance, is
10 GHz . One can plot the two types of dispersion diagrams
mentioned above. These diagrams are shown in Fig. 1.

Figure 1a represents the drivenmode dispersion diagram
where the vertical axis is the temporal frequency, and the
horizontal axis is the real and imaginary parts of the wave
number (α and β). The real part represents the losses along
the antenna, including the radiation loss, while the imaginary
part represents the phase delay across a unit cell. On the other
hand, Fig. 1b shows the dispersion diagram obtained by the
eigen mode analysis. The vertical axes represent the real and
imaginary parts of the complex temporal frequencies (ωr and
ωi), while the horizontal axis represents the purely imaginary
propagation constant. What does the imaginary part of the
frequency mean? And how is it related to the radiation loss?
Is there a one to one mapping from Fig. 1a to Fig. 1b? Those
questions are answered in the following section.

III. INTERPRETATION OF THE COMPLEX FREQUENCIES IN

THE P-LWA PROBLEM

The CRLH-PLWA may be considered as a one-dimensional
transmission line along the z direction with cross section in

Fig. 2. Mapping between two complex planes through a complex function
f . Although f is intended here to be general, the plot shows the case where
f is double-valued

the x− y plane. A general form of the electric field along the
structure may be written as

E(x, y, z; t) = E(x, y)eγzejΩt, (1)

where γ = α + jβ and Ω = ωr + jωi. The expression
(1) may be seen as an inverse Laplace transform of a field
with single complex frequency, where the Laplace transform is
performed over the time variable, t. The form (1) must satisfy
the Helmholtz wave equation, from which one can derive the
general dispersion relation, i.e. the general relation between γ
and Ω.

The dispersion relation may be written in its most general
form as γ = f(Ω;µ, ε, σ), where µ is the permeability, ε is the
permittivity and σ is the conductivity of the medium. In the
present example, these parameters may be expressed in terms
of the transmission line LCRG parameters. The function f is a
complex function relating the propagation constant, γ, and the
complex frequency, Ω. The inverse of f is Ω = f−1(γ;µ, ε, σ).
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Fig. 3. Complex frequency (eigenmode) dispersion diagram of the CRLH-PLWA in [2] for (a) the critical damped case for β = 0, and (b) the underdamped
case for β = 0.

These relations suggest that any contour in the complex Ω

plane can be mapped onto the complex γ plane by the means
of the function f , and vice versa with f−1. This concept is
pictorially illustrated in Fig.2. In a lossless medium, the real
axis of the complex Ω plane is mapped onto the imaginary axis
of the complex γ plane. In contrast, in a lossy medium, the
real axis of the complex Ω plane is mapped via the function
f onto a more general contour in the complex γ plane, with a
non-zero α. In this case, the wave attenuation in the medium is
mathematically represented by α which implies an exponential
decay of the field amplitude, e−αz . Alternatively, one can map
the imaginary axis of the γ plane via f−1 onto the Ω plane.
Since a LWA is ‘lossy’, where loss is due to radiation and
therefore exists even in the absence of any other kind of loss,
the jβ axis is mapped onto a general contour in the Ω plane,
with a non-zero ωi. According to (1), only ωi may account
for this radiation loss in the structure. However, this loss is
represented by an exponential decay of the field amplitude
with time in the form e−ωit.

Thus, it is important to note that the two diagrams in
Fig. 1 represent distinct pieces of information, without any
redundancy except for their origin. For instance, all the points
on Fig. 1a represent field solutions with complex propagation
constants, i.e. γ = α+jβ and α 6= 0. On the other hand, α = 0

at all points of Fig. 1b. This means that the two diagrams
in Fig.1 show the possible solution of the wave equation for
different parameter zones, and there is no one to one mapping
between them.

A useful perspective to further understand the difference
between the two dispersion diagrams in Fig. 1 is to consider
Fig. 1a as a steady state representation and Fig. 1b as a
transient representation. One may thus consider the com-

plex frequencies as the characteristic roots of the differential
equation describing the system. For any system following a
second order linear differential equation, the characteristic
roots can be classified into one of three categories: over
damped, critically damped and under damped [3]. In circuit
theory, electric components are considered to be of negligible
electric size and therefore circuits do not include any space
dependence, i.e. β = 0. If one extends circuital concepts to the
more general case of an electromagnetic medium with large
(or unbounded) electric size, the physical significance of the
solutions represented in Fig. 1b becomes immediately obvious.
For each specific value of β one can solve for the characteristic
roots of the system and get either two non-equal real roots
(over damped case), or two equal real roots (critically damped
case) or two complex conjugate roots (under damped case).
Since in (1) we assume a time dependence in the form ejΩt

instead of eΩt as in Laplace transform, the three different cases
here correspond to:

• Over damped case: Two different values for ωi and two
equal values for ωr

• Critically damped case: Two equal values for ωi and two
equal values for ωr

• Under damped case: Two equal values for ωi and two
different values for ωr

In Fig. 1b, each value of the horizontal axis (β) represents
the boundary conditions applied at the ends of the unit cell.
Thus, for each value of β the structure has a different transient
behavior characterized by the two complex values of Ω at that
specific β. It is also clear that if one changes the geometry
of the structure itself, a different solution will arise so as to
describe the transient behavior of the new structure.

To illustrate this concept, consider the three different cases
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given in [2] in the optimization of the radiation of the CRLH-
PLWA at broadside. The optimization was done by tuning
the transversal symmetry of the unit cell. For each stage of
optimization, the dispersion diagram is computed using the
eigen mode analysis. Figure 1b represents the symmetric unit
cell case, Fig. 3a represents the optimal-asymmetric unit cell
case, and Fig. 3b represents the over-asymmetric unit cell
case. The difference between the three different figures is
significant only around the point β = 0, which corresponds
to the broadside operation of the antenna. At this point, if
the characteristic roots of the system (complex frequencies)
represent a critically damped case, the radiation at broadside
is optimum in the sense that the radiation efficiency does not
drop as compared to off-broadside operation. Although the
antenna is not practically driven by a complex temporal fre-
quency, the information given in Fig. 3 is useful to characterize
the behavior of the system, exactly as the impulse response
of a linear time-invariant system is useful to understand the
behavior of the system in response to different excitations. In
[4], the behavior shown in Fig. 3a was related to the Heaviside
condition of distortion-less transmission line, while in this
paper, we relate it also to the critical damping nature of the
transient response of the antenna.

IV. CONCLUSION

The drivenmode analysis and eigen mode analysis pro-
vide complementary information about an electromagnetic
structure. There is no one-to-one correspondence between
the dispersion relation curves resulting from each of the
two analyzes. In case of a distributed structure, the complex
temporal frequency dispersion relation provides information
on the nature of the transient behavior of the structure. It turns
out that in the particular case of a CRLH-PLWA, optimum
radiation at broadside is achieved when the impulse response
of the antenna has the form of a critically damped response.
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