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Abstract—Network Function Virtualization (NFV) is one of 

the most promising technologies which decouples Network 

Functions (NFs) from hardware resources to support more 

flexible network services and network resource allocation. 

However, these benefits increase the possibility of Service 

Function Chain (SFC) failures due to hardware failures, 

software defects and burst traffic, resulting in serious 

consequences. Unfortunately, existing failure detection methods 

have several issues, such as simplification of detection 

functionality, heavy overhead, and low accuracy. This paper 

introduces a framework FullSight, in which control plane and 

the programmable data plane can collaboratively detect failure 

and Deep Learning (DL) based algorithms are adopted for 

failure detection. FullSight can achieve an all-round perception 

of the state of the SFC, in which network information is 

acquired through the data plane, SFC components’ message is 

obtained through the control plane. In addition, a failure 

detection model based on DL is established. Compared with the 

state-of-the-art methods, FullSight can support 8 kinds of the 

fine-grained failure detection. Our comprehensive evaluation of 

prototypes and simulations shows that FullSight can realize 

rapid and accurate detection and classification of diversified 

failures in SFCs. The bandwidth overhead reduces by 57% 

compared with the existing methods. Additionally, FullSight has 

a detection accuracy up to 93.5%. 

Keywords—Network function virtualization, service function 

chain, collaborated detection, programmable data plane, deep 

learning 

I. INTRODUCTION 

Software Defined Networking (SDN) realizes the 
decoupling of control plane and data plane, and greatly 
increases the flexibility of the network [1]. NFV enables NFs 
to be decoupled from dedicated commodity hardware, greatly 
reducing the cost of telecom operators [2], [3]. SFC is a series 
of NFs (i.e., Firewall (FW), Deep Packet Inspection (DPI), 
Intrusion Detection System (IDS), Network Address 
Translator (NAT), etc.) connected in a particular sequence. 
SFC based on SDN and NFV has increased the agility and 
dynamics of service orchestration, effectively reduces costs of 
Operation Administration and Maintenance (OAM), and has 
become a powerful network technology in recent years.  

However, the agile and dynamic orchestration also 
enhances the complexity of SFC deployment, and leads to 
boost the probabilities of SFC failures. After accomplishing 
SFC deployment, it is necessary for us to continuously 
monitor the status of the SFC to ensure the quality of 
experience (QoE) and quality of service (QoS) to satisfy the 
needs of users. Furthermore, SFC failures due to hardware 
failures, software defects, etc. may occur at any time. 

Some existing failure detection approaches such as the 
traditional tool hping3 or probe packets can only discover one 
failure or a class of failure [4]. Distinguishing the kind of 
failure is difficult. Even though the failure is discovered, the 
accuracy and efficiency of the troubleshooting are extremely 
low. Fig. 1 illustrates the above the case.  

 The blue line represents the route when the probe 
detects the persistent black holes. From the judgment 
of probe manager, we consider that Service Function 
Forwarder 2 (SFF2) occurs failure. 

 VNF1 (Virtualized Network Function1) breaks down 
when the probe transmission process. However, we 
firmly believe that SFF2 is faulty while the actual 
failures are VNF1 breakdown and persistent black 
holes, which leads our judgment to be inaccurate. 
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Fig. 1. Some cases of judging failure incorrectness 

The main challenges of SFC real-time failure detection are 
as follows:  

1) SFC failures consist of network failures (for instance, 
congestion, and persistent black holes) and components’ 
failures (links, NFs, Nodes, SFFs, Classifiers (CFs), etc.,), 
which involve multiple dimension statistical data [4], [5]. In 
order to monitor failure in real time, we need to gather the 
status of the network and all SFC components. The scale of 
data for failure detection is relatively huge. 

2) In SDN, The failure propagates iteratively between the 
switches based on their dependence relations [6]. Similarly, in 
SFC, this dependency also exists which affects failure 
judgment. For example, a link failure can also cause NFs’ 
failure, according to the propagation relation. However, two 
failures of both link and NFs exist actually, resulting in 
incorrect judging. Besides, Fig. 1 shows that the same failure 
characteristics do not imply the same failure, which cannot be 
visually analyzed from the superficial consequence [7], [8].  

3) The total time of SFC failure detection contains link 
latency (include the latency of the physical and the virtual 
link), switches processing latency. Aiming at fast failure 
detection is of great significance that reduces the total time of 
SFC failure detection [9]. 
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4) The accuracy of failure detection is a key element for 
troubleshooting [10]. Enhancing the accuracy and efficiency 
of failure detection is a significant target of failure detection. 

To address the above challenges, we put forward FullSight, 
a collaborated and DL based failure detection framework of 
SFC, in which data plane can collaboratively work with 
control plane for failure detection. FullSight can achieve fast 
and accurate failure detection and reduce the probe overhead. 
Furthermore, FullSight can classify failure accurately into 8 
categories with the aid of different DL algorithms. In general, 
the main contributions of this paper are as follows: 

• We develop a data plane network scheme in FullSight 
based on container network and Programming 
Protocol-Independent Packet Processors (P4)-based 
SDN network. Our network scheme not only achieves 
the separation of data traffic and control traffic, but 
also makes the data plane forward packets more 
flexible and efficient.  

• We propose a mechanism to realize collaborated 
detection of SFC failures with data plane and control 
plane. The data plane can make up for the deficiencies 
of the control plane monitoring SFC. The mechanism 
proposed this paper not only considers severe failures, 
but also "invisible" degradations. In addition, the 
mechanism contributes to comprehensively 
discovering the failures in SFC.  

• DL based detection algorithms are proposed to gather 
and analyze high-dimensional status information of the 
underlying physical network, virtual network, VNFs, 
and Nodes. These algorithms can accurately discover 
the propagation relationship between failures, and 
manifest high accuracy for failure detection and 
classification.  

• We have verified the performance of FullSight in a 
prototype system. Compared with the state-of-the-art 
methods, FullSight decreases the probe overhead by 
57%, and supports 8 kinds of the fine-grained failure 
detection. Additionally, the detection accuracy is up to 
93.5%. 

The rest of this paper is listed as follows. Section II 
introduces the related work in failure detection. Section III 
describes the architecture design and failure modeling. We 
introduce FullSight in details in Section IV. The performance 
evaluation of prototypes is shown in Section V. Section IV 
gives a summary and future work. 

II. RELATED WORK 

Researching on SFC failure detection have been mostly 
isolated so far. In addition, there is no relevant research on 
failure classification. Failure detection methods are mainly 
divided into two types, active and passive detection methods 
[11-13]. However, neither of them can conduct 
comprehensive detection and classification of SFC failures. 

The active detection method is designed to construct some 
special probe packets to detect the failures of SFC. RFC 8924 
[5] proposes SFC OAM, a network measurement way for SFC, 
which provides a simple scheme for detecting failures. The 
scheme takes up a lot of bandwidth resources and has a low 
bandwidth utilization. When network congestion is heavy, 
OAM will aggravate the load of the network, and cannot 
detect multiple failures on one service chain at the same time. 

[14] proposes a SFC failure detection tool, SFC path tracer, 
applied in SDN/NFV network scenarios. SFC path tracer 
constructs probes by using the hping3 tool to detect CFs, SFFs, 
VNFs, and locates failure by reporting to the controller every 
hop. However, this method has the same flaws as mentioned 
in RFC 8924. [4] introduces a failure detection method FDM, 
which reduces the overhead of active detection. However, the 
method needs to calculate the position where probes are 
placed in advance. When the topology changes, FDM needs 
to recalculate the position, which is time-consuming. 

Some methods are based on the programmable data plane 
using in-band network telemetry (INT) for failure discovery. 
[15] uses INT to detect "gray" failure in data center networks 
(DCNs), such as silent packet loss and persistent black holes. 
By placing active probes, the probes collector is used to store 
the feasible paths in the path information table, and the 
corresponding aging time is set to detect the occurrence of 
failures. This method has many shortcomings such as small 
detection range, poor real-time performance, and low 
bandwidth utilization. [16] proposes a method in-band 
network function telemetry (INFT) to effectively monitor the 
performance of NFs. INFT collects network status through the 
data plane, generates less overhead (without control plane 
intervention), and captures transient changes in the entire 
network. The author adds support for the report, similar to the 
postcard in the framework, so that a single data packet can be 
tracked effectively. However, this approach lacks efficiency 
in the SFC failure detection, and needs to report to the 
controller every hop, and multiple failure points cannot be 
found at the same time.  

Most passive methods are triggered by SFC abnormal 
events. [7] uses the error correlation method for the virtual 
Service Function Chain (vSFC) based on NFV scenarios to 
detect performance anomalies. This method collects the 
indicators of multiple elements of the vSFC and analyzes the 
correlation over a period of time to infer the health of NF. For 
example, set the correlation coefficient of the CPU utilization 
of the upstream and downstream VNF to determine whether 
the upstream VNF is failure or abnormal. However, this 
approach lacks universality and cannot fully detect SFC 
failures. [17] judges the reason of the network function failure, 
according to the queue depth of NFs and the latency of the 
packet. For instance, the CPU interruption of the upstream 
NFs will decrease the throughput of the downstream NFs. This 
way can only judge which the NF fails, and cannot detect the 
failures of the entire SFC chain. [18] introduces a technique 
based on extended Berkeley Packet Filter (eBPF) to monitor 
container network performance in a microservice scenario, 
and monitors container network events in real time by 
implementing the dynamic deployment of container network 
measurement sensors. However, this approach need deploy a 
network measurement sensor on the network interfaces of 
each container, which increases the monitoring cost and 
cannot simultaneously discover multiple failure points on the 
same path. 

In summary, the state-of-the-art technologies cannot fully 
detect SFC failures. Therefore, we propose a scheme FullSight, 
which can realize comprehensive, fast and intelligent failure 
detection and classification of SFC. FullSight can detect and 
classify failures at the same time, which provides theoretical 
and practical basis for SFC migration or failure recovery. 
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III. ARCHITECTURE DESIGN AND FAILURES MODELLING 

In this section, we introduce the architecture design of 
FullSight and diverse failures modelling. FullSight can 
capture most types of failures and identify severe packet loss, 
while keeping a low overhead.  

A. FullSight Architecture 

The FullSight architecture based on the SDN/NFV is 
shown in Fig. 2. FullSight is made up of three planes: data 
plane, control plane, and knowledge plane.  

 The data plane implements the function of SFC 
based on INT and forwards the packets. In addition, 
we design the agent for obtaining the network 
information, which achieves fine-grained collection 
of network status.  

 The control plane adopts Kubernetes (K8s) and 
ONOS controller. We develop the agent for the 
perceiving information of SFC components. The 
agent can quickly discover possible failures (e.g. 
Nodes, VNFs, Physical Links, Virtual Links), which 
greatly reduces the pressure of data plane failure 
detection with a low monitoring overhead.  

 The function of the knowledge plane is mainly to 
preprocess the collected data, analyze it with DL 
algorithms such as Long Short-Term Memory 
(LSTM), Bi-directional Long Short-Term Memory 
(BiLSTM), Convolutional Neural Networks (CNN), 
and implements SFC failure detection and 
classification. 
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Fig. 2. Architecture of FullSight 

The following is the detecting failure workflow of 
FullSight when the failures occur on SFC. FullSight can make 
full use of the agents for the control and data plane to achieve 
collaborated failure detection. 

 The user packets are generated and encapsulated with 
NSH and INT header. Each time through every 
switch on the chains, FullSight encapsulates the 
network information in the INT data fields. 

 The controllers including K8s master and ONOS 
obtain the information of the network and SFC 
components in real time. 

 Two agents gather the information from the control 
plane and data plane respectively. 

 The agents quickly import data into the MySQL 
database. 

 The data processing module handles the high-
dimensional data collected by the agents, and takes 
shape a dataset afterwards.  

 LSTM, BiLSTM, CNN are the algorithms storing in 
the knowledge base, which are used to analyze the 
dataset to acquire the results of failure detection and 
classification. 

B. Network Modelling 

In order to detect all failures in SFC, we build a 
mathematical model of the network. SFC status includes SFC 

components and network status, which are represented by CS  

and NS  respectively. The states of the SFC components 

include physical resources and virtual resources are defined 

by PS  and VS , respectively. The physical resources status are 

abstracted into ,P P

P N LS S S=  , where 
P

NS  and 
P

LS  

respectively denote the status of physical nodes and physical 
links. The physical nodes can be represented by

,P P P

N C SS U U=  , where 
P

CU  and 
P

SU  respectively mean 

computer resource and storage resource. VNFs resource is 

denoted by ,V NF NF

NF C SS U U=  , where ,NF NF

C SU U  represents 

respectively the VNFs resource of computer and storage. 

Network status NS  includes: Switch ID, Queue Depth, Port 

ID, Throughput, Link Delay, Processing Delay, abstracted as 

, , , ,N SW Port Link PS ID Q ID D D=  . 

C. Failures Modelling 

Some failures include Links, SFFs, SFFs, VNFs, etc., 
which can be measured directly or indirectly based on their 
status through the agent of the control plane. However, the 
failures caused by congestion and persistent black holes need 
to obtain their state set through the agent for the data plane, 
and use the following ways to establish a failure model.  

1) Congestion Failure 

When the transmission latency of the packet is greater than 
the latency threshold, we define this situation as the 

congestion failure. Let Dt  be the transmission latency, and Tt  

be the latency threshold. Congestion failure is denoted by 

D Tt t . The causes of congestion failures include excessive 

link utilization, CPU, Memory and other related indicators. 
When any probe packet is transmitted in the SFC, the 
difference between the ingress timestamps of entering the 
switch and egress timestamps of leaving the switch is greater 

than the threshold, which is defined by 
i i

TI TE Tt t t−  , i N  , 

N  is the total number of probe packets.  

2) Persistent Black holes Failure 

The persistent black holes show that all the transmitted 
packets are lost. Therefore, the existence of failures cannot be 
detected only from the control plane. FullSight can make up 
for the defects of the control plane detection. Fig. 3 shows the 

packet path when persistent black holes occur. We use 
w

ijC  to 

indicate the network and VNFs status collected from the 
control plane, where j  represents the type of collected status, 

including physical\virtual links, VNFs. w  defines the status 

including normal and failure. Let r  and d be normal and 

failure respectively. If a switch occurs the persistent black 
holes, the SFC components state obtained through the control 
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plane is normal, and the upstream network state obtained 
through INT is also normally. However, the downstream state 
has no data, which is presented by None. Table 1 shows that 
the persistent black holes occur in the mth switch. 

TABLE I.   DATA STATISTICS OF A CERTAIN CHAIN OCCURING 

PERSISTENT BLACK HOLES  

jw

iC  1

jrC  2

jrC  jr

mC  1

jr

mC +  jr

NC  

jw

iD  1

jrD  2

jrD  jr

mD  None   None  

User A User B

VNF2VNF1

Persistent Black holes

INT + SFC

Classifier

FailureSFF1 SFFm

P4 switch

 

Fig. 3. Failure for the persistent black holes 

IV. IMPLEMENTATION 

In this section, the design details for implementing 
FullSight are presented. To address the packet forwarding, we 
design the network based on container and P4 and propose the 
header format of the packet. In addition, we introduce in 
details the process of the collaborated failure detection and 
describe the three DL algorithms. 

A. Container Network and Underlying Physical Network 

For the data plane, we put forward a scheme for 
P4+Macvlan network, as shown in Fig. 4. Macvlan is a 
network plugin of K8s, which can virtualize multiple network 
interfaces for one network interface of the container. 
Compared with Bridge, Macvlan is a more efficient container 
network solution. The main interface in the Macvlan network 
uses virtual network interface cards (VNICs).  

We use VNICs to connect the switches and the containers. 
Switches are connected by network interface cards (NICs). 
NIC1 and NIC2 represent control interface and data interface 
respectively. By this means, we can separate the traffic of 
control plane and data plane. Besides, based on CNI-Genie 
Pods can be assigned multiple network interfaces. In our 
experiments, containers are all in the same subnet. 

B. Protocol Design for INT and SFC 

The header format of SFC based on INT is shown in Fig. 
6. We adopt the Network Service Header (NSH) to 
encapsulate the SFC packet. In order to distinguish SFC traffic 
and the other traffic, we use the first 6 bits of the DSCP field 
in the IPv4 header to mark SFC packets. The INT header is 
encapsulated in the UDP/TCP Payload. The last 2 bits of the 
DSCP field are used to mark the INT packet. Compared with 
a PING packet at least containing 64 Bytes, telemetry 
information occupies a total of 28 Bytes which includes INT 
header and INT data. 

Fig. 7 demonstrates P4 source program based INT and 
SFC handles the workflow of the packets. Classifier 
implements NSH and INT header encapsulation. SFFs push 
the INT data stack and decapsulate the NSH. The INT sink 
(SFF3) decapsulates the NSH, INT header, and INT data 
based on source and destination IP. 
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Fig. 4. The scheme of FullSight network 
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Fig. 5. INT-SFC header format 
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Fig. 6. The workflow of handling packets by P4 switches 

C. Collaborated Failure Detection 

Collaborated failure detection mainly uses the data plane 
and control plane to perform failure detection together. We 
exploit four modules, including Agents for Control\Data Plane 
Failure Detection, Information Database, Data Processing, DL 
Detection Algorithms. The agent of control plane mainly 
collects real-time data such as VNF status, Node status, 
including CPU, MEMORY, running state, and the other 
information through the Kubernetes REST API. The agent of 
data plane uses INT technology to collect fine-grained data, 
including Queue Depth of SFF, Port ID, SFF ID, Latency, 
Throughput, etc.. Data plane makes up for the lack of control 
plane, and can discover the "invisible" failure, such as a high 
resource utilization, persistent black holes. The control plane 
can provide a broader sight for the data plane. The 
collaborated failure detection mechanism is less affected by 
the propagation relationship between failures. 
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We capture INT data by Scapy script and use MySQL to 
construct an information database of failure detection and 
import all collected data into the information database for 
decision-making by the knowledge plane.  

The data processing module preprocesses the collected 
multi-dimensional data, removes information irrelevant to 
failure detection and classification, and ensures the 
consistency of multi-dimensional information in time. We 
propose three DL algorithms (Algorithm 1) based on LSTM, 
BiLSTM and CNN, to detect and classify failures. The dataset 
is divided into training set, validation set, and test set, with a 
ratio of 6:2:2 respectively. Before feeding the dataset to train 
models, we first convert the dataset into word2vec word 
vectors, Each word corresponds to a unique high-dimensional 
vector, and then forms the input matrix of the training model, 
where each row of the matrix corresponds to a word. Our 
dataset includes 34-dimensional attributes of each SFC, from 
which n-dimensional useful attributes are selected and 
preprocessed, and each row of data is filled with n words. 

Then we establish the relevant network model, use the 
activation function ReLU, and use the regularization 
technology DROPOUT to speed up the convergence of the 
model. Finally, the Adam optimizer is used for optimization, 
and the SFC failure detection models based on the DL 
algorithms are obtained. 

Algorithm 1 The Training Process of Algorithms 

Input: Dataset 1 1 2 2{( , ), ( , ), , ( , )},m mD x y x y x y=  
{ , , , , , , , , };NF NF P P

i Ci Si SWi i Proti Lnki Pi Ci Six U U ID Q ID D D U U   

i  represents the i th−  SFC 

Output: Models-pool   with various parameters 

1:  Initialize the model’s parameters 0 0 = , 0 0.1N = , 

0 0L = , Learning rate    

2:  Data processing using word_embedding method 

3:  for each step of training epochs do  

4:        for each iteration do 

5:            compute the cross_entropy C ; 

6:            compute the loss C ; 

7:            
.. .

2( )Y Y − ; 

8:             C C + ; 

9:             update model’s parameters according to its 

gradient descent algorithms 

10:            'N N  −  ; 

11:            '  −  ; 

12:        end for 

13:        Save N  and   to pool    

14:end for 

V. EXPERIMENTAL EVALUATION 

A. Experiment Setting 

The network topology is shown in Fig. 7. A total of 7 
servers include 1 control node (deploying K8S and ONOS) 
and 6 worker nodes. Server configuration are 7 DELL 
PowerEdge R740s, with 16-Core 2.4 GHz Intel Xeon CPU, 
64GB DDR4 RAM and 8 1-Gbps Ethernet NICs. We 

implement our method and run experiment based on Ubuntu 
Linux operation system version 18.04. In order to diversify the 
data, we construct 4 different VNFs, which produce a total of 

4 SFCs such as 1 11,h h→  2 22,h h→ 3 33,h h→  

4 44h h→ . We end up with around 1,5K rows of data with 

34 features from the actual system and manually inject 8 types 
of SFC failures. We use the open-source tool stress-ng to 
exhaust CPU and MEMORY resources. In the experiment, 
both clients and servers run iperf and exchange UDP traffic. 
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Fig. 7. Prototype topology 

B. Metrics 

Our experiments use four performance indicators to 

evaluate the FullSight performance. We let AF , PF  , RF  and 

1F score  be the accuracy, precision, recall and 

comprehensive evaluation index respectively, which are 
defined by: 

 TP TN

A

TP TN FP FN

F F
F

F F F F

+
=

+ + +
  (1)  

 TP

P

TP FP

F
F

F F
=

+
  (2) 

 TP

R

TP FN

F
F

F F
=

+
  (3) 

 
2* *

1 P R

P R

F F
F score

F F
=

+
  (4)  

where , , ,TP TN FP FNF F F F  represent true positive, true negative, 

false positive, false negative, respectively.  

C. Evaluation 

Table 2 shows that FullSight can accurately identify 8 
types of failure. It can be concluded from our experimental 
results that Our algorithms can identify multiple failure on a 
service chain at the same time. We exhibit some experimental 
consequence to demonstrate the effectiveness of our scheme. 

Fig. 8 shows the results that we use the accuracy, precision, 
recall, and 1sF core  to evaluate the three detection algorithms 

proposed. Experimental results show that the effect of CNN is 
better. The accuracy, precision, recall, and 1sF core  of 

FullSight are up to 93.5%, 89.2%, 88.9%, and 91.0%, 
respectively.  

Fig. 9 demonstrates that the detection time of FullSight is 
much lower than that of hping3 when one service chain exists 
more than one failure. However, when there is only one failure 
in SFC, the time of detecting the failure by hping3 is lower 
than that of FullSight. The failures types of Fig. 9 includes 
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TABLE II.  TYPES OF DETECTION FAILURE 

 

vLink, Pod. Based on the above situation, FullSight has shown 
the excellent performance. In addition, FullSight's telemetry 
information occupies 28 Bytes per packet, compared with the 
traditional method hping3, it reduces probe overhead by 57%. 

 

Fig. 8. Comparision of F1score and accuracy with three algorithms 

 

Fig. 9. Comparison of detection latency with different number of failures 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose a collaborative detection 
framework FullSight, in which the control plane works 
collaboratively with data plane and DL algorithms based are 
adopted for failure detection. Experimental results show that, 
compared with the existing methods, FullSight can detect 
diversified failures and can achieve a lower overhead and 
higher detection accuracy. When there are multiple failures in 
SFC, FullSight has an extremely low detection latency. In the 
next step, we will continue to optimize FullSight in two 
aspects: reducing the detection delay when there is only one 
failure in SFC, and improving the accuracy of the algorithms. 
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