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Abstract—In orthogonal frequency division multiplexing
(OFDM) systems, the compressed sensing (CS) technology was
proposed for pilot-based sparse channel estimation to improve
the bandwidth efficiency and/or estimation performance. The
design of pilot patterns plays an important role for CS-based
channel estimation. Conventionally, the CS-based pilot pattern
design is based on the criterion of minimizing the mutual
coherence of the corresponding measurement matrix. In this
work, we investigate the relation between a pilot pattern and
the corresponding measurement matrix, and derive a new and
tighter upper bound of reconstruction error for CS-based channel
estimation. According to the upper bound, we propose a new
criterion for pilot pattern design in order to achieve better
estimation performance. Based on the simulation results, the pilot
pattern based on the proposed criterion improves the estimation
performance with a gain between 1.5 dB to 2.5 dB in normalized
mean square error (NMSE).

Index Terms—Compressed sensing (CS); orthogonal frequency
division multiplexing (OFDM); sparse channel; channel estimation.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) offers

a promising solution for high data rate services and has

become the mainstream technology of 4G wireless commu-

nications systems. Because of the frequency-selective fading

nature in OFDM systems, channel equalization based on

channel estimation is essential for data demodulation at the

receiver. Particularly, under a time-varying channel, pilot sig-

nals are inserted into each OFDM symbol in order to acquire

the dynamic channel state information (CSI). Conventionally,

multiple subcarriers are reserved for pilot signals transmission

and the channel effect is estimated at the receiver based on

least squares (LS), minimum mean square error (MMSE) or

maximum likelihood (ML) approaches. The allocation of pilot

subcarriers is generally equally-spaced (i.e., regular allocation)

for uniformly sampling in the frequency domain. Hence, the

number of required pilot subcarriers is proportional to the

time-domain delay spread of the channel. Under a channel

with a very large time delay-spread, numerous pilot subcarriers

†Corresponding author. This work was supported in part by the Ministry
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are required for providing sufficient resolution in the frequency

domain, which results in a waste of spectral resource.

In some propagation environments, the multipath channel

tends to have a very large delay spread but with a sparse

distribution. In other words, the number of channel taps is very

large, but the channel is dominated by only a relative few of

non-zero taps. For example, both the high-definition television

(HDTV) channels and underwater acoustic channels exhibit

similar distributions [1], [2]. Under this scenario, the conven-

tional approaches are either quite inefficient or the estimation

performance is unacceptable for using a limited number of

pilot subcarriers. The compressed sensing (CS, also known as

compressive sensing) technology is known to be an effective

approach that can reconstruct the original signals from a set of

observations significantly fewer than the number traditionally

thought necessary [3]-[5]. Under the condition that the system

satisfies certain properties, we can acquire the original signals

with a high probability by means of some recovery algorithms.

The CS technology has been applied to the applications such

as pattern recognition, imaging sensors, machine learning,

communications, and sensor networks [6]. By utilizing the

CS technology for pilot-based sparse channel estimation in

OFDM systems, only fewer subcarriers are required for pilot

transmission in order to achieve good estimation performance,

e.g., [7]-[10].

Unlike the conventional approaches generally using regular

pilot patterns, the design of pilot patterns for CS-based channel

estimation plays an important role in OFDM systems [11]-

[16]. Because the applied pilot pattern (i.e., the locations of

the pilot subcarriers) corresponds to the measurement matrix

of CS estimation, the goal of pilot pattern design is to make

the measurement matrix satisfy certain properties for recon-

struction error minimization. In principle, the reconstruction

error is determined by the orthogonality of the measurement

matrix. Hence, mutual coherence, which is a measure of matrix

orthogonality, of the corresponding measurement matrix is

commonly used as a design criterion of pilot patterns. Based

on the relation between mutual coherence and the upper

bounds of reconstruction error proposed in [17], several pilot

pattern design methods are proposed to optimize the estimation
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performance. In [11], by the random search approach, a great

amount of pilot patterns are randomly generated and the one

achieving the minimum mutual coherence in the corresponding

measurement matrix is chosen as the optimal pilot patterns. To

reduce the searching complexity, several works propose effi-

cient approaches for pilot design based on some optimization

algorithms [12]-[16]. A tree-based backward pilot generation

scheme is proposed in [12]. In [13], the pilot design algorithm

based on the cyclic different set (CDS) is proposed by using a

sub-optimal approach. The genetic algorithm (GA) is adopted

in the searching process to obtain a sub-optimal pilot pattern

efficiently [14], [15]. Similarly, based on the use of constrained

cross-entropy optimization, a pilot pattern searching algorithm

was proposed for cognitive radio (CR)-OFDM systems in [16].

Note that all the above-mentioned works are based on the

design criterion of minimizing the mutual coherence of the

measurement matrix for reconstruction error minimization.

In this work, based on the CS-problem for channel estima-

tion in OFDM systems, we investigate the relation between a

pilot pattern and the corresponding measurement matrix, and

derive a new and tighter upper bound of reconstruction error.

According to the upper bound, we propose a new criterion

for pilot pattern design in order to obtain better estimation

performance. In the simulations, we observe that the pilot

based on the proposed design criterion outperforms that based

on mutual coherence, resulting in significant improvement in

channel estimation performance.

II. PRELIMINARIES

A. System Model

The considered OFDM system comprises N subcarriers,

where P out of N subcarriers are employed as pilot subcarriers

for channel estimation, and the other N − P subcarriers are

used as data subcarriers. By applying an N -point inverse

discrete Fourier transform (IDFT) on the frequency-domain

signals, we obtain the time-domain OFDM symbol x =
[x0, x1, · · · , xN−1]

T for transmission. Before transmission,

a cyclic prefix (CP) with length Ncp is inserted to prevent

the inter-symbol interference (ISI) caused by channel delay

spread. The propagation channel is assumed to be an L-tap

multipath fading channel, i.e., the maximum delay spread is

L sample intervals, which is smaller than the CP length Ncp.

The channel impulse response can be represented by a finite

impulse response (FIR) filter as

h(n) =
∑L−1

�=0
h�δ(n− �), n = 0, · · · , L− 1 (1)

where the channel coefficients h�, for 0 ≤ � ≤ L − 1,

are assumed to be complex-Gaussian distributed and time-

invariant during an OFDM symbol interval. Note that the

channel is assumed to be a sparse channel; that is, the channel

is dominated by a few taps with significant path gains and the

rest of taps have negligible path gains. For example, if the

number of non-zero taps is S, we have S � L.

After passing through the propagation channel and removing

the CP, the received time-domain discrete signal can be

expressed as

r[i] =
∑L−1

�=0
h�x[i− �] + v[i], for 0 ≤ i ≤ N − 1. (2)

At the receiver, by applying an N -point discrete Fourier

transform (DFT), the frequency-domain signal R = [R0,
R1, · · · , RN−1]

T is obtained. The relation between the

receive signal vector R and the transmit signal X can be

expressed as

R = XWh+ v, (3)

where X = diag (X0, X1, · · · , XN−1) denotes the fre-

quency domain signals on the N subcarriers, including P
pilot subcarriers and N − P data subcarriers; h = [h0,
h1, · · · , hL−1]

T represents the multipath channel response;

v = [v0, v1, · · · , vN−1]
T is the channel noise vector,

representing the received complex additive white Gaussian

noise (AWGN), which has mean zero and covariance matrix

σ2
vIN ; and W is an N × L matrix composed of the first L

columns drawn from the full DFT matrix, i.e.,

W =

⎡
⎢⎢⎢⎢⎢⎣

ω0,0 ω0,1 · · · ω0,L−1

ω1,0 ω1,1 · · · ω1,L−1

...
...

. . .
...

ωN−1,0 ωN−1,1 · · · ωN−1,L−1

⎤
⎥⎥⎥⎥⎥⎦ (4)

where ωi,� = e−j2πi�/N , for 0 ≤ i ≤ N−1 and 0 ≤ � ≤ L−1.

B. CS-based Reconstruction

Consider a linear system defined as

r = Φu+ z, (5)

where r ∈ R
K is an observation vector, Φ ∈ R

K×M is

the measurement matrix, u ∈ R
M is a vector of the desired

unknown parameters, and z ∈ R
K is a noise vector. In general,

if the number of unknown parameters in u is much larger

than the number of observations in r (i.e., M � K), (5)

becomes an underdetermined system and no unique solution

of u can be obtained. However, under the constraint that u
is S-sparse, i.e., at most S of its entries are nonzero, solving

(5) to obtain a unique solution of u is feasible by using the

CS techniques. There are several kinds of recovery algorithms

that can be used to acquire u from r, such as the basis

pursuit (BP) approach based on l1-norm minimization [18]

and the orthogonal matching pursuit (OMP) scheme based on

greedy algorithms [19], [20]. Because of its low complexity,

the OMP scheme has become a popular approach for signal

reconstruction in CS.

Based on l1-norm minimization, the estimate of u is ob-

tained by

û1 = argmin
u

‖u‖1
s.t. ‖Φu− r‖2 ≤ ε.

(6)

It is well-known that if the measurement matrix Φ satisfies

the restricted isometry property (RIP), the reconstruction error

‖u− û1‖2 is bounded by the noise level ε, where ε ≥ ‖z‖2

Proceedings of APCC2015 copyright © 2015 IEICE 14 SB 0087

316



is the maximum norm of noise [17]. In practice, based on

the mutual incoherence property (MIP) [21], the assessment

of uniqueness of the sparsest solution in (6) is commonly

through measuring the mutual coherence of the measurement

matrix. The mutual coherence of a matrix Φ, denoted by

M(Φ), is defined as the maximum absolute value of the cross-

correlations between any two column vectors of Φ, i.e.,

M (Φ) = max
1≤m,n≤M,m �=n

∣∣cHmcn
∣∣ (7)

where cm is the m-th column vector of Φ. In general, the

orthogonality of Φ is inversely proportional to the value of

M(Φ). For an S-sparse vector u, the reconstruction error is

upper bounded by a function of M(Φ) [17].

C. CS-based Sparse Channel Estimation

In OFDM systems, channel estimation is generally based

on the received signals carried on the pilot subcarriers. For

the conventional approaches, numerous pilot subcarriers are

required for the estimation of a channel with a large delay

spread. By extracting the signals received on pilot subcarriers,

we have the P × 1 pilot signal vector RΩ represented as

RΩ = XΩWΩh+ vΩ, (8)

where RΩ =
[
RΩ0 , RΩ1 , · · · , RΩP−1

]T
, in which Ri, i ∈

Ω denotes the symbol received on subcarrier i; Ω =
{Ω0, Ω1, · · · , ΩP−1} is the set of indices corresponding to

all pilot subcarriers; XΩ = diag
(
XΩ0 , XΩ1 , · · · , XΩP−1

)
denotes the diagonal matrix corresponding to the transmit pilot

symbols; WΩ is composed of P rows by drawing out the i-th

rows from W, ∀i ∈ Ω; and vΩ =
[
vΩ0 , vΩ1 , · · · , vΩP−1

]T
is the vector representing noises on pilot subcarriers. Based

on (8), the time-domain channel vector h can be solved if

the number of pilot subcarriers is equal to or larger than the

channel length, i.e., P ≥ L.

Because the considered channel is sparse, we can reduce

pilot overhead required for channel estimation, i.e., P � L, by

using the CS techniques. Comparing (8) with (5), we observed

that the channel vector h is the desired unknown parameter

vector and XΩWΩ can be regarded as the measurement

matrix. If the measurement matrix XΩWΩ satisfies RIP, the

sparse channel vector h can be obtained by using some

recovery algorithms. In this work, we adopt OMP as the

recovery algorithm for sparse channel estimation.

III. PROPOSED PILOT PATTERN DESIGN CRITERION

A. Conventional Pilot Pattern Design Criterion

Since the upper bound of the reconstruction error is in-

versely proportional to the mutual coherence M(Φ), a com-

mon criterion used for the design of the pilot pattern is to

choose the one achieving the smallest M(Φ) for CS-based

channel estimation. For practical applications, numerous pilot

patterns are generated/searched and the one with the minimum

mutual coherence among them is chosen as the best pilot

pattern [11]-[16], i.e.,

Φopt = argmin
Φi

{M(Φi)} , (9)

where Φi is the measurement matrix corresponding to the i-th
pilot pattern.

B. Properties of the Measurement Matrix

Before introducing the proposed design criterion, we in-

vestigate the properties of the measurement matrix in OFDM

channel estimation. For OFDM systems, it is generally as-

sumed that every pilot symbol has equal transmit power E,

i.e., |Xi|2 = X∗
i · Xi = E, ∀i ∈ Ω, where ∗ denotes the

complex-conjugate operation. By normalizing XΩ to have unit

l2-norm, i.e., X̃Ω = XΩ

/√
PE, we have (8) rewritten as

R̃ = Φh+ ṽ, (10)

where R̃ = RΩ

/√
PE, ṽ = vΩ

/√
PE, and Φ = X̃ΩWΩ,

which is a P ×L matrix. Note that each column of Φ still has

unit l2-norm. Since only the pilot signals are used for channel

estimation, the matrix subscript Ω is hereinafter omitted. For

a specific channel, let Δ = {Δ0, Δ1, · · · , ΔS−1} be the

support of the underlying h (i.e., the index set of the non-zero

elements in h), and Ψ be the P×S sub-matrix which consists

of the S columns, corresponding to Δ, drawn out from Φ, i.e.,

Ψ =
1√
PE

⎡
⎢⎢⎢⎢⎢⎣

XΩ0 · ωΩ0,Δ0 · · · XΩ0 · ωΩ0,ΔS−1

XΩ1 · ωΩ1,Δ0 · · · XΩ1 · ωΩ1,ΔS−1

...
. . .

...

XΩP−1
· ωΩP−1,Δ0 · · · XΩP−1

· ωΩP−1,ΔS−1

⎤
⎥⎥⎥⎥⎥⎦

(11)

Under the condition that the OMP algorithm recovers the

correct support, the reconstruction error is bounded by [17]∥∥∥h− ĥOMP

∥∥∥2
2
=

∥∥Ψ† · ṽ∥∥2
2
≤ ∥∥Ψ†∥∥2

2
· ‖ṽ‖22 . (12)

where ĥOMP is the channel estimate obtained by using the

OMP algorithm, and Ψ† represents the MoorePenrose pseudo-

inverse matrix of Ψ. Note that the l2-norm
∥∥Ψ†∥∥

2
is equal to

the largest singular value of Ψ†; or equivalently, the inverse

of the smallest singular value of Ψ [22]. Correspondingly, the

reconstruction error is bound by

∥∥∥h− ĥOMP

∥∥∥2
2
≤ ‖ṽ‖22

λmin (GΨ)
(13)

where GΨ = ΨHΨ is the Gramian matrix of Ψ with

H denoting the Hermitian transpose, and λmin (GΨ) is the

smallest eigenvalue of GΨ. Because Φ is determined by the

applied pilot pattern Ω, the objective of pilot pattern design is

to find Ω for the maximization of λmin (GΨ) corresponding

to Φ.

C. Upper Bound of Reconstruction Error

In the following, we analyze a strict upper bound of

λmin (GΨ), so as to obtain a tighter upper bound of the recon-

struction error. Accordingly, we introduce another pilot design
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criterion based on the proposed upper bound. Considering the

measurement matrix Φ, the corresponding Gramian matrix is

GΦ = ΦHΦ =

⎡
⎢⎢⎢⎢⎢⎣

φ1,1 φ1,2 · · · φ1,L

φ∗
1,2 φ2,2 · · · φ2,L

...
...

. . .
...

φ∗
1,L φ∗

2,L · · · φL,L

⎤
⎥⎥⎥⎥⎥⎦ (14)

where φm,n is the correlation coefficient between the m-th

and n-th columns of Φ, i.e.,

φm,n = 1
PE ×

P−1∑
k=0

(
X∗

Ωk
·XΩk

) (
ω∗
Ωk,m

· ωΩk,n

)
=

P−1∑
k=0

ωΩk,(n−m)

/
P , ∀ 0 ≤ m ≤ n ≤ L− 1

(15)

where X∗
Ωk

·XΩk
= E, and ωΩk,� = exp(−j2πΩk�/N), for

0 ≤ Ωk ≤ N − 1 and 0 ≤ � ≤ L − 1. Note that φm,n

conforms the property 0 ≤ |φm,n| ≤ 1, ∀ m,n, and φm,n = 1
for m = n. Moreover, based on (15), we observe that the

correlation coefficient φm,n depends only on the difference

between the two column indices m and n for a specific pilot

pattern Ω. By defining φ̃�
Δ
= φm,n for � = n − m, (15) can

be rewritten as

GΦ =

⎡
⎢⎢⎢⎢⎢⎣

1 φ̃1 · · · φ̃L−1

φ̃∗
1 1 · · · φ̃L−2

...
...

. . .
...

φ̃∗
L−1 φ̃∗

L−2 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ (16)

Note that the largest absolute value of the off-diagonal

elements in GΦ is the mutual coherence M(Φ). Since Ψ is

a sub-matrix composed of S columns drawn out from Φ, the

elements of GΨ are the corresponding elements in GΦ, i.e.,

GΨ =

⎡
⎢⎢⎢⎢⎢⎣

1 φ̃Δ1−Δ0 · · · φ̃ΔS−1−Δ0

φ̃∗
Δ1−Δ0

1 · · · φ̃ΔS−1−Δ1

...
...

. . .
...

φ̃∗
ΔS−1−Δ0

φ̃∗
ΔS−1−Δ1

· · · 1

⎤
⎥⎥⎥⎥⎥⎦ (17)

where φ̃Δn−Δm is the correlation coefficient between the Δm-

th and Δn-th columns of Φ. For a specific channel realization,

the reconstruction error relies on the minimum eigenvalue of

GΨ. As addressed in [23], Theorem 1 provides a lower bound

of the minimum eigenvalue of a matrix as follows.

Theorem 1: Let A be an n × n complex matrix with real

eigenvalues λ(A), and let

a = tr(A)/n, b2 = tr(A2)
/
n− a2 (18)

where tr(·) is the trace of a matrix. Then

a− b×√
n− 1 ≤ λmin(A) ≤ a− b

/√
n− 1, (19)

a+ b
/√

n− 1 ≤ λmax(A) ≤ a+ b×√
n− 1. (20)

0 Δ0 Δ1 Δ2 Δ3Channel Tap

Channel Gains hΔ0
hΔ1

hΔ2
hΔ3

L – 1

≈

δ δ δ

Fig. 1. An example of channel distribution yielding the worse case of S = 4.

Equality holds on the left (right) of (19) if and only if equality

holds on the left (right) of (20) if and only if the n−1 largest

(smallest) eigenvalues are equal [23].

Since the Gramian matrix GΨ is an S×S complex, positive

semi-definite matrix, all of its eigenvalues are real and not less

than zero. Thus, by Theorem 1, we have

a = tr(GΨ)/S = 1, b =
√
tr(G2

Ψ)
/
S − 1 (21)

and

λmin(GΨ) ≥ 1−
√(

tr(G2
Ψ)

S
− 1

)
(S − 1) (22)

where

tr(G2
Ψ) = S +

∑
1≤m,n≤S

m �=n

gm,n · gn,m = S + 2×
∑

1≤m,n≤S
m<n

|gm,n|2

(23)

with gm,n denoting the (m,n)-th element of GΨ. Note that

the elements of GΨ are specified by the channel support Δ,

or precisely, the index differences between the non-zero taps

in h for a specific pilot pattern. To find the lower bound of

λmin (GΨ) for any possible channel realization, we need to

find the largest value of tr(G2
Ψ). By ordering the absolute

values of correlation coefficients in GΦ in descending order,

we have φ′
m, for m = 1, · · · , L − 1, where |φ′

m| ≥ ∣∣φ′
m+1

∣∣
for m = 1, · · · , L − 2. Then, the largest value of tr(G2

Ψ)
is achieved when φ′

m appears exactly S − m times in GΨ,

respectively for m = 1, · · · , S − 1, i.e., the worst case is

GΨ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 φ′
1 φ′

2 · · · φ′
S−1

(φ′
1)

∗ 1 φ′
1

. . .
...

(φ′
2)

∗ (φ′
1)

∗ 1
. . . φ′

2

...
. . .

. . .
. . . φ′

1

(φ′
S−1)

∗ · · · (φ′
2)

∗ (φ′
1)

∗ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

In other words, the non-zero taps in h are equally spaced and

the corresponding correlation coefficients between them are

the largest ones. Hence, we have the worse case of tr(G2
Ψ),

which yields the smallest lower bound of λmin (GΨ), as

tr(G2
Ψ) ≤ S + 2×

∑S−1

m=1
(S −m) |φ′

m|2 (25)

In Fig. 1, we show an example of S = 4. We assume that

the support Δ = {Δ0, Δ1, Δ2, Δ3} of the underlying h
satisfies the following conditions:

1) The non-zero taps in h are equally spaced, i.e., Δ1 −
Δ0 = Δ2 −Δ1 = Δ3 −Δ2

Δ
= δ.
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2) According to (16), the correlation coefficients with the

first 3 largest absolute values in GΦ are φ′
1 = φ̃δ , φ′

2 =
φ̃2δ , and φ′

3 = φ̃3δ .

Based on condition 1, we have Δ2 − Δ0 = Δ3 − Δ1 = 2δ
and Δ3 − Δ0 = 3δ. Then, according to (17), we obtain the

worse case of GΨ as

GΨ =

⎡
⎢⎢⎢⎢⎢⎣

1 φ′
1 φ′

2 φ′
3

(φ′
1)

∗ 1 φ′
1 φ′

2

(φ′
2)

∗ (φ′
1)

∗ 1 φ′
1

(φ′
3)

∗ (φ′
2)

∗ (φ′
1)

∗ 1

⎤
⎥⎥⎥⎥⎥⎦

D. Proposed Pilot Pattern Design Criterion

To achieve the best estimation performance, we need to

find a pilot pattern that can minimize the value of tr(G2
Ψ)

for improving (raising) the lower bound of λmin (GΨ). We

propose a novel pilot pattern design criterion based on tr(G2
Ψ).

We define the measure metric as

W (Φ) =
∑S−1

m=1
(S −m) |φ′

m|2, (26)

which can be regarded as a weighted combined mutual co-

herence of the measurement matrix Φ. If W (Φ) is smaller, a

smaller value of tr(G2
Ψ) is obtained. As a result, a higher

lower bound of λmin (GΨ) is achieved based on (22) and

a smaller reconstruction error is guaranteed based on (13).

Therefore, the proposed pilot pattern design criterion is to

find the pattern achieves the smallest metric W (Φ). The

reconstruction error based on the proposed pilot pattern design

criterion is given in Theorem 2.

Theorem 2: For the channel estimation problem in OFDM

systems as stated in (10), let ĥOMP be the estimation result

of h via OMP. Then, under the condition that ĥOMP recovers

the correct support, the reconstruction error is bounded by∥∥∥h− ĥOMP

∥∥∥2
2
≤ ‖ṽ‖22

1−√
2W (Φ) (1− 1/S)

Δ
=

‖ṽ‖22
λW

(27)

Proof: The proof is omitted here.

As reported in [17], in the conventional pilot pattern de-

sign criterion based on the mutual coherence, the minimum

eigenvalue of GΨ is lower bounded by

λmin(GΨ) ≥ 1−M (Φ)× (S − 1) (28)

Correspondingly, the reconstruction error is upper bounded by∥∥∥h− ĥOMP

∥∥∥2
2
≤ ‖ṽ‖22

1−M (Φ)× (S − 1)

Δ
=

‖ṽ‖22
λM

(29)

Compared the proposed pilot pattern design criterion W (Φ)
with the conventional one, we have the following theorem.

Theorem 3: For the channel estimation problem in OFDM

systems as stated in (10), let ĥOMP be the estimation result

of h via OMP. Then, under the condition that ĥOMP recovers

the correct support, the upper bound of reconstruction error

based on W (Φ) is tighter than that based on M (Φ); that is,∥∥∥h− ĥOMP

∥∥∥2
2
≤ ‖ṽ‖22

λW

≤ ‖ṽ‖22
λM

(30)

TABLE I
STATISTICS OF THE GENERATED PILOT PATTERN FOR THE PILOT DESIGN

SCENARIOS A, B AND C.

Scenarios A B C

Number of randomly gen-
erated pilot patterns

1,000 100,000 500,000

Number of evaluations 500

Number of evaluations
choosing different patterns

201 (40.2%) 149 (29.8%) 91 (18.2%)

TABLE II
RANGES OF THE METRICS OF THE MEASUREMENT MATRICES BASED ON

THE CONVENTIONAL AND PROPOSED CRITERIA.

Criteria Conventional Proposed

M (Φ) W (Φ) Corresponding M (Φ)

Scenario A (0.274, 0.301) (0.678, 0.849) (0.274, 0.330)

Scenario B (0.250, 0.264) (0.570, 0.625) (0.251, 0.278)

Scenario C (0.239, 0.250) (0.551, 0.615) (0.243, 0.278)

where λW and λM are respectively defined in (27) and (29).

Proof: The proof is omitted here.

IV. PERFORMANCE EVALUATION

In the simulation, we assume that the number of subcarriers

in the OFDM system is N = 512 and P = 25 subcarriers

are used for the transmission of pilot symbols. The sparse

multipath channel h has the maximum delay spread L = 50
taps and the number of non-zero channel taps is S = 5, where

the first channel tap h0 is always non-zero and the other 4 non-

zero taps are randomly distributed within the successive taps.

The power delay profile of h follows the exponent decay, i.e.,

|hl|2 = exp (−l/L) for l = 0, · · · , L − 1 [11]. In the signal

reconstruction, the OMP scheme is adopted as the recovery

algorithm and the stopping condition is based on the known

sparsity S, i.e., the OMP algorithm performs S iterations.

As shown in Table I, we consider three scenarios, where the

numbers of randomly generated pilot patterns are K = 1,000,

100,000 and 500,000 respectively for Scenario A, Scenario B

and Scenario C. Then, the optimal pilot pattern is chosen based

on either the conventional criterion M (Φ) or the proposed

criterion W (Φ). We independently evaluate each scenario

500 times to obtain the simulation statistics. Among the 500

times of independent evaluation, different design criteria lead

to different optimal patterns with a high probability, i.e.,

40.2%, 29.8% and 18.2% respectively for the three scenarios.

To compare the estimation performance achieved by the two

design criteria, we focus only on the cases when different

optimal patterns are chosen by the two criteria. The ranges of

the metrics M (Φ) or W (Φ) corresponding to the optimal pilot

patterns are also shown in Table II. For the proposed design

criterion, the range of the corresponding mutual coherence

M (Φ) is also shown as a reference. When different optimal

patterns are chosen by the two criteria, the proposed criterion

yields the selection of a measurement matrix with a larger

mutual coherence.
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Fig. 2. Comparison of estimation accuracy based on the stopping condition
of known sparsity S.

We compare in Fig. 2 the estimation accuracy, measured

by normalized mean square error (NMSE), of different de-

sign criteria based on the stopping condition of performing

the OMP algorithm S iterations. The NMSE is defined as∥∥∥h− ĥOMP

∥∥∥2
2

/
‖h‖22 for each channel realization, by aver-

aging over the results of 50,000 random channel realizations.

In addition to the CS approach based on the conventional

and proposed design criteria, we provide the performance of

the least square (LS) approach and CS approach by using an

equally spaced pilot pattern. For the LS approach, the number

of pilot subcarriers P = 25 is far less than the minimum

required one. As a result, the estimation performance is

quite bad. For the CS approach with an equally spaced pilot

pattern, the measurement matrix does not have good properties

and the corresponding metrics are M (Φ) = 0.9049 and

W (Φ) = 5.529. Hence, the estimation accuracy is still quite

bad. However, by using non-uniform pilot pattern, the CS-

based performance is greatly improved. Comparing the two

criteria, the performance of the proposed criterion based on

metric W (Φ) is far better the conventional one based on

M (Φ) with an improvement in NMSE between 1.5 dB to

2.5 dB.

V. CONCLUSION

In this work, we have proposed a new pilot pattern design

criterion for CS-based channel estimation in OFDM systems

over a sparse channel. The design criterion is based on a

new evaluation metric corresponding to multiple column-

correlation coefficients in the measurement matrix. Moreover,

an upper bound of reconstruction error corresponding to

the proposed evaluation metric is derived. According to the

simulation results based on the random search approach, the

proposed design criterion leads to an optimal pilot pattern

different to that obtained by using the conventional criterion

with a high probability. Correspondingly, the pilot pattern

based on the proposed criterion outperforms that based on

the conventional criterion in the estimation performance, and

an improvement between 1.5 dB to 2.5 dB in NMSE can be

achieved. The proposed design criterion can be applied to not

only the random search approach, but also to other pilot search

approaches.
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