## A Linear Time Algorithm for Tri-connectivity Augmentation of Bi-connected Graphs with Upper Bounds on Vertex-Degree Increase

Toshiya Mashima<sup>1</sup> Satoshi Taoka<sup>2</sup> Toshimasa Watanabe<sup>2</sup>

<sup>1</sup>Faculty of Engineering, Hiroshima International University

5-1-1, Hirokoshingai, Kure, 737-0112, Japan

<sup>2</sup>Graduate School of Engineering, Hiroshima University

1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

E-mail : <sup>1</sup>mashima@it.hirokoku-u.ac.jp, <sup>2</sup>{taoka,watanabe}@infonets.hiroshima-u.ac.jp

**Abstract**: The 3-vertex-connectivity augmentation problem of a graph with degree constraints, 3VCA-DC, is defined as follows: "Given an undirected graph G = (V, E), and an upper bound  $b(v) \in Z^+ \cup \{\infty\}$  on vertex-degree increase for each  $v \in V$ , find a smallest set E' of edges such that  $(V, E \cup E')$  is 3-vertex-connected and such that vertex-degree increase of each  $v \in V$  by the addition of E' to G is at most b(v), where  $Z^+$  is the set of nonnegative integers." In this paper we show that checking the existence of a feasible solution and finding an optimum solution to 3VCA-DC for any bi-connected graph G can be done in O(|V| + |E|) time.

## 1. Introduction

Given an undirected graph G = (V, E) and a subset  $S \subseteq V$ , G is said to be *k*-vertex-connected (or *k*-connected) with respect to S if and only if G has at least k internally-disjoint paths between any pair of vertices in S, where if S = V then "with respect to S" is neglected.

The k-vertex-connectivity augmentation problem for a specified set of vertices of a graph with degree constraints, kVCA-SV-DC, is defined as follows: "Given a positive integer k, an undirected graph G = (V, E), a specified set  $S \subseteq V$ and an upper bound  $b(v) \in Z^+ \cup \{\infty\}$  on vertex-degree increase for each  $v \in V$ , find a smallest set E' of edges such that G + E' is k-connected with respect to S and such that vertex-degree increase of each  $v \in V$  by the addition of E' to G is at most b(v), where  $G + E' = (V, E \cup E')$  and  $Z^+$  is the set of nonnegative integers." We call any set F of edges a so*lution to k*VCA-SV-DC if G + F is k-connected with respect to S, and we say that any set F' of edges is *feasible* (or more precisely *b*-feasible) if F' includes at most b(v) edges incident to v for each  $v \in V$ . Any feasible solution of minimum cardinality is called an *optimum solution to kVCA-SV-DC*. kVCA-SV-DC has application to designing communication networks. kVCA-SV-DC with S = V is denoted as kVCA-DC. kVCA-SV-DC with  $b(v) = \infty$  for all  $v \in V$  is denoted as kVCA-SV. kVCA-SV with S = V is denoted as kVCA. Figure 1 shows an instance of 3VCA-DC.

We summarize known results on *k*VCA-SV-DC. For 2VCA, a polynomial time algorithm was proposed by Eswaran and Tarjan [1], and a linear time algorithm was proposed Rosenthal and Goldner [11] and Hsu and Ramachandran [5]. For 3VCA, a polynomial time algorithm was devised by Watanabe and Nakamura [14], and a linear time algorithm was proposed by Hsu and Ramachandran [4]. For 4VCA, Hsu [3] devised a polynomial time algorithm. For



Figure 1. An instance, G = (V, E) and  $b: V \to Z^+ \cup \{\infty\}$ , of 3VCA-DC, where G is bi-connected and the number beside each vertex  $v \in V$  denotes b(v). The edge set  $\{(b, j), (d, g), (f, h)\}$  shown by bold dotted lines is an optimum solution. Notice that if b(b) = 0 then there is no feasible solution since  $b(\{a, b\}) = b(a) + b(b) = 0$ .

any fixed k, Jackson and Jordán [6] first devised a polynomial time algorithm for kVCA. Concerning kVCA-SV, it was shown that kVCA-SV can be solved in linear time by reducing it to kVCA by Watanabe, Higashi, and Nakamura [13] if k = 2 and by Mashima and Watanabe [10] if k = 3. For 2VCA-SV-DC, we proposed a linear time algorithm [8].

In this paper we show that checking the existence of a feasible solution and finding an optimum solution to 3VCA-DC for any bi-connected graph G can be done in O(|V| + |E|)time. All proofs are omitted due to shortage of space. The full version of the paper appears in [9].

## 2. Preliminaries

#### 2.1 Basic definitions

An undirected graph G = (V(G), E(G)) consists of a finite and nonempty set V(G) of vertices and a finite set E(G) of undirected edges. V(G) and E(G) are often denoted as V and E, respectively. We assume that graphs have neither multiple edges nor self-loops unless otherwise stated. An edge whose endvertices are u and v is denoted by (u, v). The *degree* of a vertex v in G,  $d_G(v)$ , is the number of edges incident to v in G. For a set E' of edges with  $E' \cap E = \emptyset$ , G + E' denotes the graph  $(V, E \cup E')$ . For a set  $X \subseteq V \cup E$ , G - X denotes the graph obtained from G by deleting X, where any edge incident to  $v \in X$  is also removed. A *subgraph* of G is any graph H such that  $V(H) \subseteq V(G)$  and  $E(H) \subseteq E(G)$ . For  $X \subseteq V$ , let  $\Gamma(X;G) = \{v \in V - X \mid (u,v) \in E(G) \text{ for some } u \in$ X}. If G is clear from the context,  $\Gamma(X;G)$  may be denoted as  $\Gamma(X)$ . For any function  $f: V \to Z^+ \cup \{\infty\}$  and any set  $X \subseteq V$ , we use the notation  $f(X) = \sum_{v \in X} f(v)$ .

A path between u and v, or a (u, v)-path, is an alternating sequence of vertices and edges  $u = v_0, e_1, v_1, \ldots$ ,  $v_{n-1}, e_n, v_n = v$   $(n \ge 0)$  such that if  $n \ge 1$  then  $v_0, \ldots, v_n$ are all distinct and  $e_i = (v_{i-1}, v_i)$  for each  $i, 1 \le i \le n$ . If  $n \ge 2$  then the vertices  $v_1, v_2, \cdots, v_{n-1}$  are called the *inner* vertices of the path. A set of paths is said to be *internally*disjoint if no two of them have an inner vertex in common. Any maximal connected subgraph of G is called a *connected* component or simply a component of G. A tree is an acyclic connected undirected graph. A leaf of a tree is a vertex with only one edge incident to it.

Let G be a connected graph. Any subset R of V is called a *separator of* G if and only if G - R is disconnected. Any separator of minimum cardinality is called a *minimum separator of* G. The *vertex-connectivity*  $\kappa(G)$  of G is the cardinality of any minimum separator of G, where if G is a complete graph then  $\kappa(G)$  is defined to be |V| - 1. If  $\kappa(G) \ge k$  for a positive integer k then G is said to be k-vertex-connected (or k-connected); in particular, if  $\kappa(G) \ge 2$  ( $\kappa(G) \ge 3$ ) then G is said to be bi-connected (tri-connected, respectively). Note that  $\kappa(G) \ge k$  holds if and only if G has at least k internally-disjoint paths between any pair of vertices in V.

Let G be a bi-connected graph. For any pair of vertices  $u, v \in V, \{u, v\}$  is called a *separation pair of* G if and only if  $\{u, v\}$  is a separator of G. Let SP(G) denote the class of all separation pairs of G, where the part "(G)" is often omitted for simplicity unless any confusion arises. Let  $K \in SP(G)$ . Any component of G-K is called a *K*-component of G. The separating degree of K in G is the number of K-components of G, and it is denoted by  $d_G(K)$  or simply d(K). In this paper, we often identify a K-component (or a component) with its vertex set.

#### 2.2 Tri-components and 3-block graph

Let G be a bi-connected graph. Tri-connected components (tri-components for short) [2, 12] of G are constructed from G by the two operations "split" and "merge". Tri-components can be partitions into three classes: tri-connected graphs, polygons and bonds, where a bond is a graph consisting of two vertices and at least three multiple edges between them. For the details of tri-components, refer to [2, 12]. Figure 2 shows tri-components of the graph G in Fig. 1. Any separation pair shared by at least two tri-components, each being either a tri-connected graph or a polygon, is called a separation pair of adjacent type, and any separation pair consisting of nonadjacent vertices in a polygon is called a separation pair of nonadjacent type. Let  $SP_A(G) = \{K \in SP(G) \mid K \text{ is of} adjacent type\}$ , where the part "(G)" is often omitted for simplicity unless any confusion arises.

The 3-block graph [4], 3-blk(G), of a bi-connected graph G is constructed as follows. The vertex set of 3-blk(G) consists of three kinds of vertices called  $\sigma$ -vertices,  $\pi$ -vertices or  $\beta$ -vertices: we create a  $\sigma$ -vertex for each separation pair of adjacent type, a  $\pi$ -vertex for each polygon, and a  $\beta$ -vertex for each tri-component that is a tri-connected graph. Then distinct vertices u, v created above are connected by an edge if and only if either (1) or (2) holds: (1)  $\{u, v\}$  is a pair of a



Figure 2. Tri-components of the graph G in Fig. 1. Edges represented as broken lines are virtual edges.



Figure 3. 3-blk(G) of the graph G in Fig. 1.

 $\sigma$ -vertex and a  $\beta$ -vertex, and the separation pair represented by the  $\sigma$ -vertex is contained in the tri-connected graph represented by the  $\beta$ -vertex; (2)  $\{u, v\}$  is a pair of a  $\sigma$ -vertex and a  $\pi$ -vertex, and the separation pair represented by the  $\sigma$ -vertex is contained in the polygon represented by the  $\pi$ vertex. Moreover, for each each vertex  $w \in V(G)$  with  $d_G(w) = 2$ , do the following: create a  $\beta$ -vertex u for  $\{w\}$ , and a  $\sigma$ -vertex v for  $\Gamma(w; G)$ ; connect u and v by an edge; connect by an edge the vertex v and the  $\pi$ -vertex representing the polygon to which w belongs. The resulting graph is 3-blk(G). 3-blk(G) is a tree and can be constructed in O(|V| + |E|) time by using the algorithm in [2] for finding tri-components of G. Figure 3 shows 3-blk(G) of the graph G in Fig. 1.

Let  $v \in V(3\text{-blk}(G))$ . The degree of v in 3-blk(G) is denoted by  $d_{3\text{-blk}(G)}(v)$  or simply d(v) unless any confusion arises. If d(v) = 1 then v is called a *leaf* of 3-blk(G).

Any subset  $K \subseteq V$  represented by a  $\sigma$ -vertex of 3-blk(G) is called a  $\sigma$ -pair of G. Any graph represented by a  $\beta$ -vertex of 3-blk(G) is called a 3-block of G. Any 3-block B of G is called a singleton 3-block if B consists of a single vertex of G; otherwise B is a tri-connected 3-block. For any 3-block B of G, let  $d_G(B)$  or simply d(B) denote the number of separation pairs  $K \in SP(G)$  with  $K \subseteq V(B)$ , where we set  $d_G(B) = 1$ for any singleton 3-block B. For any polygon P of G, let  $d_G(P)$  or simply d(P) denote the sum of the number of separation pairs  $K \in SP_A(G)$  with  $K \subseteq V(P)$  and the number of singleton 3-blocks included in P. For any  $v \in V(3\text{-blk}(G))$ , let  $K_v$ ,  $B_v$  or  $P_v$  denote the  $\sigma$ -pair, the 3-block or the polygon represented by v, respectively. Note that  $d(v) = d_G(B_v)$  for any  $\beta$ -vertex v and that  $d(u) = d_G(P_u)$  for any  $\pi$ -vertex u.

Any separation pair K of G is said to be a primary separation pair if either  $d(K) \ge 3$  or  $K \subseteq V(B)$  for some 3-block B with  $d(B) \ge 3$ . For any  $v \in V$  with d(v) = 2, let  $P_G(v)$  or



Figure 4. An instance for which there is no feasible solution to 3VCA-DC, where l(G) = d(G) = 5 and the condition (2) does not hold. {b, d} is the separation pair K with d(K) = d(G). Since b(V-K) = 5 < 8 = 2(d(G)-1), there is no feasible solution.

simply P(v) denote the polygon of G containing v. Let  $T_G$  or simply T denote the set  $\{v \in V \mid d(v) = 2, d(P(v)) \ge 3\}$ .

#### 2.3 Lower bounds

Let G be a bi-connected graph with  $|V| \ge 4$ . Let v be any leaf of 3-blk(G) and let u be the  $\sigma$ -vertex adjacent to v in 3blk(G). Then the subset  $V(B_v) - K_u \subseteq V$  is called a *leaf of* G or the leaf of G represented by v. Let  $\mathcal{L}(G)$  denote the class of all leaves of G, and let l(G) denote the number of leaves of G (or equivalently the number of leaves of 3-blk(G)). Note that  $X \cap X' = \emptyset$  for any distinct  $X, X' \in \mathcal{L}(G)$ . Let d(G)denote the maximum separating degree of all separation pairs of G (or equivalently the maximum degree of all  $\sigma$ -vertices in 3-blk(G)). For G in Fig. 1,  $\mathcal{L}(G) = \{\{a, b\}, \{f\}, \{g\}, \{h\}, \{i, j\}\}, l(G) = 5$ , and d(G) = 3.

Lemma 1: For any feasible solution F to 3VCA-DC for G and  $b, |F| \ge \max\{d(G) - 1, \lceil l(G)/2 \rceil\}$ .

Lemma 2: If either  $(d(G)-1 > \lceil l(G)/2 \rceil)$  or  $(d(G)-1 = \lceil l(G)/2 \rceil$  and l(G) is odd) then there is the unique  $\sigma$ -vertex  $v \in V(3\text{-blk}(G))$  with d(v) = d(G); furthermore,  $K_v$  is the unique separation pair  $K \in SP(G)$  with d(K) = d(G).

# 3. The Existence Condition for Feasible Solutions

In this section we show a necessary and sufficient condition for the existence of a feasible solution to 3VCA-DC for any biconnected graph G with  $|V| \ge 4$ .

*Theorem 3:* There is a feasible solution to 3VCA-DC for a bi-connected graph G with degree constraints by b if and only if the following (1)–(3) hold.

(1)  $b(X) \ge 1$  for any leaf  $X \in \mathcal{L}(G)$ .

(2) If either  $(d(G) - 1 > \lceil l(G)/2 \rceil)$  or  $(d(G) - 1 = \lceil l(G)/2 \rceil)$ and l(G) is odd) then  $b(V - K) \ge 2(d(G) - 1)$  for the separation pair K with d(K) = d(G). (See Fig. 4.)

(3) If  $(d(G) - 1 < \lceil l(G)/2 \rceil$  and l(G) is odd) then the following (a)–(c) hold.

(a)  $b(V) \ge l(G) + 1$ .

(b) If no polygon P with  $d(P) \ge 3$  exists and one vertex  $u \in V$  is shared by all primary separation pairs of G, then  $b(V - \{u\}) \ge l(G) + 1$ . (See Fig. 5.)

(c) If l(G) = 3, there is a polygon P with d(P) = 3, and P includes at least one singleton 3-block, then  $b(V-T) \ge l(G) + 1 - |T|$ . (See Fig. 6.)



Figure 5. An instance for which there is no feasible solution to 3VCA-DC, where l(G) = 5, d(G) = 3, and the condition (3)(b) does not hold. Vertex b is shared by all members of  $\{K \in SP(G) \mid d(K) \ge 3\} = \{\{b, f\}, \{b, h\}\}$  and  $\{K \in SP(G) \mid K \subseteq V(B)$  for some 3-block B with  $d(B) \ge 3\} = \{\{b, c\}, \{b, d\}, \{b, f\}\}$ . Since  $b(V - \{b\}) = 5 < 6 = l(G) + 1$ , there is no feasible solution.



Figure 6. An instance for which there is no feasible solution to 3VCA-DC, where l(G) = 3, d(G) = 2, and the condition (3)(c) does not hold. Polygon P with V(P) = $\{b, c, e, f, g\}$  has d(P) = 3, and  $T = \{v \in V(P) \mid d_G(v) = 2\} = \{f\}$ . Since b(V - T) = 2 < 3 = 4 - |T|, there is no feasible solution.

We call the set of the conditions (1)–(3) given in Theorem 3 *the existence condition for feasible solutions*. Note that, in the condition (2), K is unique by Lemma 2.

Given G and b, we can check whether or not the existence condition for feasible solutions holds in O(|V| + |E|) time. Hence we have the following theorem.

*Theorem 4:* Checking the existence of a feasible solution to 3VCA-DC for any bi-connected graph G can be done in O(|V| + |E|) time.

## 4. A Linear Time Algorithm

In this section, we assume that a bi-connected graph G with degree constraints by b satisfies the existence condition for feasible solutions. We partition the problem into the following three cases:

Case 1: 
$$(d(G) - 1 > \lceil l(G)/2 \rceil)$$
 or  
 $(d(G) - 1 = \lceil l(G)/2 \rceil$  and  $l(G)$  is odd);  
Case 2:  $(d(G) - 1 \le \lceil l(G)/2 \rceil$  and  $l(G)$  is even);  
Case 3:  $(d(G) - 1 < \lceil l(G)/2 \rceil$  and  $l(G)$  is odd).

And, we present three linear time algorithms, Algorithm 1 for Case 1, Algorithm 2 for Case 2, Algorithm 3 for Case 3, for finding an optimum solution. Our algorithm *Solve\_3VCA-DC\_aug2to3* for finding an optimum solution to

3VCA-DC for any bi-connected graph G consisits of applying one of three algorithms according to the case to which the problem belongs.

#### 4.1 Algorithm 1 and Algorithm 2

The following Algorithms 1 and 2 solve Cases 1 and 2, respectively. Algorithm 1 is based on the algorithm in [7], and Algorithm 2 uses an algorithm for 3VCA.

#### Algorithm 1 /\* for Case 1 \*/

- 1. Find the separation pair K of G with d(K) = d(G).
- k ← d(G). Let C<sub>1</sub>,..., C<sub>k</sub> be the k components of G K, and let l<sub>i</sub> (i = 1,..., k) be the number of leaves of G contained in C<sub>i</sub>.
- 3. Let  $a_1, \ldots, a_k$  be k integers satisfying  $\sum_{i=1}^k a_i = 2(k 1)$  and  $\ell_i \leq a_i \leq b(C_i)$  for each  $i = 1, \ldots, k$ .
- 4. Construct a tree T with  $V(T) = \{v_i \mid 1 \le i \le k\}$  satisfying  $d_T(v_i) = a_i$  for each  $v_i \in V(T)$ .
- E<sup>\*</sup> ← Ø. For each (v<sub>i</sub>, v<sub>j</sub>) ∈ E(T), add an edge which connects a vertex in C<sub>i</sub> with a vertex in C<sub>j</sub> into E<sup>\*</sup> so that E<sup>\*</sup> finally satisfies that every leaf of G contains a vertex incident to some edge in E<sup>\*</sup> as well as b-feasibility of E<sup>\*</sup>. Output E<sup>\*</sup>.

*Lemma 5:* Algorithm 1 finds an optimum solution to 3VCA-DC in Case 1 and runs in O(|V| + |E|) time.

## Algorithm 2 /\* for Case 2 \*/

- 1. Find an optimum solution F for 3VCA for G.
- 2.  $E^* \leftarrow \emptyset$ . For each  $(u, v) \in F$ , do the following: find two leaves  $X(u), X(v) \in \mathcal{L}(G)$  containing u, v, respectively; select a vertex  $u' \in X(u)$  with  $b(u') \ge 1$  and a vertex  $v' \in X(v)$  with  $b(v') \ge 1$ ; and add an edge (u', v') into  $E^*$ . Output  $E^*$ .

*Lemma 6:* Algorithm 2 finds an optimum solution to 3VCA-DC in Case 2 and runs in O(|V| + |E|) time.

#### 4.2 Algorithm 3

In Case 3, we use the strategy of reducing the problem to Case 1 or Case 2 by adding several number of edges which can be a subset of an optimum solution. In Algorithm 3, at most two edges are added before the reduction. We omit the description of Algorithm 3 due to space limitation.

*Lemma 7:* Algorithm 3 finds an optimum solution to 3VCA-DC in Case 3 and runs in O(|V| + |E|) time.

From Lemmas 5, 6 and 7, *Solve\_3VCA-DC\_aug2to3* finds an optimum solution and runs in O(|V|+|E|) time. We obtain the following theorem.

Theorem 8: If a bi-connected graph G with degree constraints by b satisfies the existence condition for feasible solutions then finding an optimum solution F to 3VCA-DC for G and b can be done in O(|V| + |E|) time and  $|F| = \max\{d(G) - 1, \lceil l(G)/2 \rceil\}$ .

## 5. Concluding Remarks

We have shown that checking the existence of a feasible solution and finding an optimum solution to 3VCA-DC for any bi-connected graph G can be done in O(|V| + |E|) time. Devising a polynomial time algorithm for 3VCA-DC for not biconnected graph is left for future research.

#### References

- K. P. Eswaran and R. E. Tarjan, "Augmentation problems," *SIAM J. Comput.*, Vol. 5, No. 4, pp. 653–665, December 1976.
- [2] J. E. Hopcroft and R. E. Tarjan, "Dividing a graph into triconnected components," *SIAM J. Comput.*, Vol. 2, pp. 135–158, 1973.
- [3] T.-S. Hsu, "Undirected vertex-connectivity structure and smallest four-vertex-connectivity augmentation," in *Lecture Notes in Computer Science 1004*, pp. 274–283, Springer-Verlag, 1995.
- [4] T.-S. Hsu and V. Ramachandran, "A linear time algorithm for triconnectivity augmentation," in *Proc. 32th Ann. IEEE Symp. on Found. of Comp. Sci.*, pp. 548–559, 1991.
- [5] T.-S. Hsu and V. Ramachandran, "Finding a smallest augmentation to biconnect a graph," *SIAM J. Comput.*, Vol. 22, pp. 889–912, 1993.
- [6] B. Jackson and T. Jordán, "Independence free graphs and vertex connectivity augmentation," in *Lecture Notes in Computer Science 2081*, pp. 264–279, Springer-Verlag, 2001.
- T. Jordán, "On the optimal vertex-connectivity augmentation," *J. Combinatorial Theory, Series B*, Vol. 63, pp. 8–20, 1995.
- [8] T. Mashima, T. Fukuoka, S. Taoka, and T. Watanabe, "Bi-connectivity augmentation for specified verteces of a graph with upper bounds on vertex-degree increase," *IEICE Trans. Inf. & Syst.*, Vol. E89-D, No. 2, pp. 751– 762, February 2006.
- [9] T. Mashima, S. Taoka, and T. Watanabe, "A linear time algorithm for tri-connectivity augmentation of biconnected graphs with upper bounds on vertex-degree increase," in *IPSJ SIG Technical Report 2007-AL-115(2)*, pp. 9–16, November 2007.
- [10] T. Mashima and T. Watanabe, "A linear time algorithm for minimum augmentation to 3-connect specified vertices of a graph," in *Proc. 1997 IEEE Intl. Symp. on Circuits and Systems*, pp. 1013–1016, 1997.
- [11] A. Rosenthal and A. Goldner, "Smallest augmentations to biconnect a graph," *SIAM J. Comput.*, Vol. 6, pp. 55– 66, 1977.
- [12] W. T. Tutte, *Connectivity in Graphs*, University of Toronto Press, 1966.
- [13] T. Watanabe, Y. Higashi, and A. Nakamura, "Constructing robust networks by means of graph augmentation problems," *IEICE Trans. Fundamentals*, Vol. J73-A, No. 7, pp. 1242–1254, 1990.
- [14] T. Watanabe and A. Nakamura, "A minimum 3connectivity augmentation of a graph," *J. Computer and System Sciences*, Vol. 46, No. 1, pp. 91–128, February 1993.