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Abstract:    Random forest model was applied to analyze 
design attributes influence on Silicon-to-SPICE(S2S) gap. 
In order to have enough model accuracy to discuss S2S gap, 
scaled learning data was used with random design attributes 
count to build each tree in forest model. From the improved 
model, indices so-called ‘importance’ and newly defined 
‘impact’ can be extracted to identify significant design 
attributes which determine S2S gap. The identified design 
attributes classify S2S gap well and show clear trend of it. 
Finally the key FinFET structures can be identified as the 
representative layout structure to cause large S2S gap. 

Keywords—Random Forest, Attribute, Importance, 
Impact, SPICE, FinFET  1.  Introduction 

To accelerate product yield ramp up, it is important to 
characterize the silicon device accurately by measuring 
device-under-test (DUT) designed exactly as same as that 
in real production chips. We have implemented cell-level 
model-hardware correlation vehicles (CMV) and product-
level model-hardware correlation vehicles (PMV) in 10nm 
FinFET technologies. These vehicles consist of transistors 
tapped to test terminals by metal routing with real design 
layout same as cell library and product chip respectively. 

Such vehicles include variety of devices with many 
different layout parameters also known as design attributes. 
Design attributes are layout features such as fin number, 
stack number, gate length, active cut types, area, density, 
and all possible local dimensions around transistor layout. 

S2S gap discussed here is the difference in device 
characteristics between silicon DUT and SPICE simulation. 
We define it by the simple equation as (1). 

S2S gap ≡ ூௗ௦௔௧(௠௘௔௦௨௥௘ௗ)ିூௗ (ௌ௉ூ஼ா)
ூௗ௦௔௧(ௌ௉ூ஼ா)       (1) 

where Idsat(measured) is the measured saturated drain 
current, Idsat(SPICE) is that of SPICE simulation at 
measured threshold voltage. For example, S2S gap = −0.1 
means 10% smaller drain current than SPICE simulation. 
S2S gap may come from incorrect modeling for particular 
design layouts, high layout sensitivity to process fluctuation 
or defects, etc. Finding design attributes that result in large 
S2S gap and fixing the systematic causes behind them are 
crucial for timely yield ramp up. 

But the number of design attributes is increasing 
significantly in the recent technology node, and the impact 
of design attributes is sometimes interdependent to each 
other. So it becomes more and more difficult to analyze the 
impact of individual design attributes accurately from the 
test vehicle such as CMV and PMV. 

We applied random forest model [1] to analyze such test 
vehicle for the following reasons. First, the model can 

handle both of numerical data and class data (or may called 
categorical data) as input to predict numerical data as 
output. In our model, the input is design attributes which 
have both data types and S2S gap is output of numerical 
data. Secondly the model can handle many descriptive 
variables such as design attributes. And depending on the 
contribution to S2S gap determination, the important design 
attributes are selected in the model. The third reason is 
effectiveness to extract design attributes contribution to S2S 
gap by analyzing the model structure. 

Random forest model is the ensemble of decision trees 
[2], the tree consists of continuous nodes, and the node is 
the most basic element to split data into next nodes. To 
build the model, a relational data set of design attributes 
and observed (measured) S2S gap is used as learning data. 

 In modeling process for each tree, data is randomly 
sampled from the learning data by so-called bootstrap 
sampling by which the data is sampled with the same size 
of learning data but allowing redundant sampling, in other 
words, data is returned to sampling source every time. And 
design attributes are also randomly selected for each tree 
modeling so that various types of trees are built. Figure 1 
shows a node structure as data split branch. At each node in 
each tee, the best design attribute is selected as a data split 
criterion to split S2S gap data in order to maximize 
variance reduction in the path from one node into the next 
two nodes, i.e. left node and right node. The varance 
reduction dS is defined by below eqation (2) with the 
expression weithted by data count of each node. 

dS ≡ Sm×nm - Sl×nl  - Sr×nr       (2) 
where Sm , Sl , Sr  are variance of S2S gap data in the node 
to split, left node, right node, and nm, nl, nr are data count 
in the node to split, left node, right node respectively. 

The data split criteria is defined by the best design 
attributes as below expression (3) or (4). 

‘att  = x   or  others’  (if x  is class/categorical data)   (3) 
‘att  ≤  x  or   others’ (if x  is numerical data)     (4)   

 

 Figure 1. Node structure as data split branch. S2S(i) is i-th 
S2S gap data. nm, nl, nr, Mm, Ml, Mr, Sm, Sl, Sr, are data 
count, mean, variance in each node. att, x are design 
atribute and its value as a data spit criterion. 
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where att and x are the selected best design attribute and its 
value. The node split ends at a terminal node where there is 
no variance reduction any more by data splitting. 

In prediction, node path of each tree is traced according 
to the input design attributes to reach the terminal node 
where the tree’s prediction is given by the mean value of 
S2S gap data. The prediction by the random forest model is 
given by the mean value of all trees’ predictions. 
 2.  Model 

To analyze design attributes influence on S2S gap 
precisely, the model acuracy was improved by two method, 
randam design attributes count and learning data scaling. 
 
2. 1 Random design attributes count 
In conventional random forest model, the design attributes 
count is fixed at n/3 or √݊ for all the trees modeling, where 
n is total design attributes count to be taken into the model, 
i.e. design attributes count in the leaning data. Model 
fitness to learning data can be improved by increasing this 
count, but it may cause over-fit. To improve model 
accuracy considering over-fit, design attributes count is 
randomized, i.e. randomly selected from √݊ ~ n for each 
tree modeling. Then with the selected count, design 
attributes are selected randomly to build each tree model. 

To estimate the over-fit, over-fit rate of the random 
forest model was defined by below equation (5). 

over-fit rate ≡ ఀ(௥௘௦௜ௗ௨௘) మ௢௙ ௧௘௦௧௜௡௚ ௗ௔௧௔
ఀ(௥௘௦௜ௗ௨௘) మ ௢௙ ௟௘௔௥௡௜௡௚ ௗ௔௧௔     (5) 

where Σ(residue)2 means prediction error which is the sum 
of squared residue between observation data and prediction 
result by random forest model (not each tree’s prediction), 
‘learning data’ is randomly selected 50% of S2S gap data 
and ‘testing data’ is remaining 50% data which is not used 
to build model. If the design attributes count for tree 
modeling is simply increased, when it exceeds ~n/2, the 
over-fit rate starts to increase abruptly and reaches up to 
~10 at the count equal to n. By applying random design 
attribute count for tree modeling, the over-fit rate is 
maintained at 1.0~1.2 and effective to improve the model 
fitness with avoiding or minimizing over-fit risk. 
 
2. 2 Learning data scaling 
Another way to improve the model accuracy is to scale the 
learning data. At first, pre-model is built by using the 
original learning data. Then scaling coefficients are 
extracted as linear regression coefficients between pre-
model prediction result and the original learning data. Then 
the original learning data is scaled by the obtained scaling 
coefficients. If the liner regression model is given by 
equation (6), the original learning data is scaled by the same 
coefficients a and b as equation (7) in order to pre-magnify 
the learning data to compensate the gap between original 
learning data and pre-model prediction. 

(original learnig data) 
      = a × ( pre-model prediction  ) + b       (6) 
(scaled learning data) 
      = a × ( original learning data ) + b       (7) 

These scaling coefficients should be extracted and 
applied to scale the data for NMOS and PMOS separately 
because the best coefficients are different between device 
types. Then the final model is built by the obtained scaled 
learning data to give more precise prediction which fits to 
the original leaning data. 

Learning data scaling has the effect to extend and adjust 
the distribution of tree’s prediction so that the mean value 
of it locates closer to the observation value. Figure 2 shows 
the example of tree’s prediction histogram. In case of the 
model by original learning data, wrong predictions exist in 
one side and pull the mean value away from the observation 
value. In case of the model by scaled learning data, the 
distribution of tree’s prediction is magnified so that the 
mean value of the distribution matches to the observation 
value. This is the case observed in the large plus side of 
S2S gap prediction range. The same phenomenon is 
observed in the large minus side of prediction range. 

 
2. 3 Model accuracy improvement 
By applying these two methods, the model fitness to the 
learning data is improved as shown in Figure 3. The model 
improvement is summarized in table 1. The slope between 
observed S2S gap (=learning data) and predicted S2S gap is 
improved to ~1 at the final model. The prediction error 
Σ(residue)2, which is sum of squared gap between 
observation and prediction, is reduced to ~1/4 times by 
random design attributes count, another ~1/6 times by 
learning data scaling, totally ~1/25 times compared with 
conventional model. 
 

 Figure 2. Histogmam of tree’s prediction. Example of 1,000 
trees to predict in the large plus side of prediction range. 
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The tree count in model also affects the model accuracy. 
From modeling exercise for various cases, the prediction 
error Σ(residue)2 reduces rapidly with increasing tree count 
and  saturates at and over ~200 tree count. In this paper, 
1,000 trees were built to model S2S gap. 

 3.  Design Attribute Identification 
The above explained method was applied to model S2S 

gap to find the key layout structures which lead to large 
S2S gap. Our primary interest is the S2S gap in large minus 
direction, which means smaller drain current than expected 
by SPICE simulation. Indices ‘importance’ and ‘impact’ 
are extracted from the obtained precise model. And 
significant design attributes can be identified. 

 
3. 1 Significant design attributes 
Index ‘importance’ is extracted for each design attribute as 
the sum of variance reduction at each node split, which is 
defined by the normalized formula (8). 

‘importance’ ≡  ∑  ௗௌ(௔௧௧) ೌ೟೟
∑  ௗௌ(஺௟௟)ಲ೗೗        (8) 

where dS is variance reduction given by equation (2), Σatt 
means sum by nodes at which a particular design attribute 
att is used to split S2S gap data into next nodes, ΣAll means 
sum by all nodes in the model except for terminal nodes. 
 

 Figure 3. Observation vs. prediction. 
 ● bule: conventional model, 
 ● green: premodel by random design atttributes count, 
 ● red: final model by random design atttributes count and 
scaled learning data,     ●●● dotted line: ideal line of slope=1 
 
Table 1. Model acccuracy improvement summary. Total 
design atributes used to build model n=14, generated tree 
count =1,000 ,  prediction data count =211 

 conventional 
model pre-model final model 

dsign 
attributes 

count fixed at √݊ random 
√݊ ~ n 

random 
√݊ ~ n 

learning 
data 

original 
data 

orioginal 
data 

scaled 
data 

Σ(residue)2 0.1364 0.0351 0.0057 
slope 2.35 1.41 1.02 

The larger value of ‘importance’ means the larger 
contribution to determine S2S gap in the model.  

Index ‘impact’ is the newly defined index. It is extracted 
for each design attribute and its value as the sum of mean 
value shift in the path from one node to the next left node. 
It is defined by the normalized formula (9).  

‘impact’ ≡  ∑  ௗெ(௔௧௧ୀ௫) ೌ೟೟సೣ
∑  | ௗெ(஺௟௟) |ಲ೗೗       (9) 

dM ≡ Ml - Mm       (10) 
where is dM, Ml, Mm are mean value shift, mean value of 
the next left node, mean value of the node before split 
respectively, and Σatt=x means sum by nodes at which a 
particular design attribute att and its value x is used to split 
S2S gap data into next nodes, ΣAll means same as the 
definition in equation (8). Larger minus or larger plus value 
of ‘impact’ should mean the more power to drive S2S gap 
to minus or plus direction respectively. 

Figure 4 shows bar chart of ‘importance’ extracted from 
improved random forest model. The result is summarized 
for NMOS transistors. Top 4 design attributes, vtType, 
fin_edge, fin_LR, and nfin with large ‘importance’ were 
selected to show their ‘impact’ in Figure 5. The design 
attributes showing large minus ‘impact’ are identified as;  
(A) vtType (threshold voltage type) = LVT 
(B) fin_edge (gate to active edge in an arbitrary unit) ≤ 32 
(C) fin_LR (fin count ratio at adjacent gate) = 1:3, 1:2, 2:3 
(D) nfin (fin count) = 3 
 

 Figure 4. Design attributes in ‘importance’ order. 
 

 Figure 5. Design attributes showing minus ‘impact’ (red bar) 
are supposed to drive S2S gap to minus direction. 
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These are supposed to be the significant design attributes to 
cause large minus S2S gap, i.e. smaller drain current than 
that of SPICE model. 
 
3. 2 Design attributes dependency 
Figure 6 and Figure 7 show S2S gap trend classified by the 
identified design attributes with plotting the observation 
data and prediction result. The model has enough accuracy 
and resolution to reproduce observed dependency. And S2S 
gap is clearly classified by the identified design attributes. 
As ‘impact’ indicates, S2S gap was verified to show clear 
trend of larger minus S2S gap at following conditions; 
at vtType = LVT rather than at vtType = RVT 
at nfin = 3 rather than at nfin = 2 
at fin_LR = 1:3, 1:2, 2:3 rather than at 2:2, 3:3, 3:2 
at fin_edge ≤ 32 rather than at fin_edge=40 ~ 64. 
 
3. 3 Representative structure 
From the significant design attributes (A), (B), (C) and (D), 
two representative structures were identified as the layout 
feature to satisfy these design attribute conditions as shown 
in Table 2. 125 transistors among 10,080 were identified to 
have these structures. 

S2S gap of the representative structure surely distributes 
in the large minus area of all DUT data as shown in Figure 
8. The mean S2S gap of it is −0.106 while that of all DUT 
data is −0.0495. The difference is tested to be significant as 
the p-value to observe such mean value (−0.106) is 
evaluated to be 0 from probability density curve for mean  
 

 Figure 6. S2S gap trend by the identified design attributes. 
 

 Figure 7. S2S gap trend by the identified design attributes. 

S2S gap shown in Figure 8. The probability density was 
calculated by accumulating mean S2S gap of ramdomly 
sampled data from all DUT data with the sampling size 
same to the representative sturucture data count. 
 4.  Conclusion 
Random forest model was applied to design attributes 
analysis on S2S gap. 
(1) The model accuracy was improved by random design 

attributes count in tree building and learning data 
scaling. 

(2) The indices such as ‘importance’ and ‘impact’ extracted 
from the improved model are effective to identity 
significant design attributes for S2S gap. 

(3) The key FinFET structures to cause large minus S2S 
gap were identified by the model analysis. 
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Table 2. Representative structure for large minus S2S gap. 

 vtType fin_edge Fin_LR nfin 
structure1 LVT 8 1:3 3 
structure2 LVT 8 2:3 3 
 

 Figure 8. S2S gap distribution of the representative 
sutructure in all DUT data. Probability density was 
calculated by 100,000 random sampling from all DUT data. 
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