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Abstract—Digital fingerprinting has been proposed to restrict
illegal distribution of digital media, where every piece of media
has a unique fingerprint as an identifying feature that can be
traceable. However, fingerprint systems are vulnerable when
multiple users collude to create a forged copy by combining their
ones. The collusion is modeled as a linear averaging attack, where
multiple weighted copies are averaged and the Gaussian noise is
then added to the averaged copy. In this paper, a new fingerprint
design robust to collusion is proposed, which is to accommodate
a lot more users than other existing fingerprint designs. A base
matrix is constructed by cyclic shifts of binary sequences in

an optical orthogonal code and then extended by a Hadamard
matrix. Finally, each column of the resulting matrix will be used
as a fingerprint. The focused detection is used to determine
whether a user is innocent or guilty in a collusion of linear
averaging attack. Simulation results show that the performance
of our new fingerprint design is comparable to that of orthogonal
and simplex fingerprints.

Keywords—digital fingerprints, fast Hadamard transform, mod-
ular Golomb rulers, optical orthogonal codes (OOC)

I. INTRODUCTION

Digital fingerprint technology is one important branch of
information hiding for copyright protection. It is an effective
technique to make media files uniquely identifiable. Once
digital media files are illegally distributed, the content owner
(or the publisher) can trace them through the unique signature.
In this way, the fingerprint becomes a threat which will deter
the users to release unauthorized copies. However, multiple
users can collude to identify or distort a fingerprinted copy
and make the content owner difficult to detect distributors.

There are two approaches in design of fingerprints robust to
such a collusion: marking assumption and distortion assump-
tion. In this paper, we consider distortion assumption only,
and readers are referred to [1] for marking assumption. In
distortion assumption regime, a unique fingerprint introduces
a noise-like distortion to digital media. The power of the
fingerprint should be perceptually invisible, which aims to
ensure the quality of original media. In terms of distortion
assumption, a fingerprinting technology involves an embedding
process. Watermarking relevant to fingerprinting is a well
known technology in this regime. Cox et al. [2] proposed a
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secure algorithm by inserting a watermark constructed as an
independent and identically distributed (i.i.d) Gaussian random
vector. The insertion guarantees the overall quality of the me-
dia and makes the colluders difficult to remove the watermark.
More efforts of watermarking can be found in [3] and [4].
Wang et al. [5] proposed a specific fingerprint design using
Gaussian distributed fingerprints and orthogonal modulation.
They considered an averaging collusion attack to analyze
the robustness of the designed fingerprint system. Kiyavash,
Moulin and Kalker [6] proposed an optimal structure of n
simplex fingerprints in terms of maximizing the error exponent
of the detection test. Recently, Mixon, Quinn, Kiyavash and
Fickus [7] designed a fingerprint system using equiangular
tight frames (ETF) [8], where the Steiner system [9] has been
exploited to construct the ETF. The performance of the ETF
fingerprints is comparable to that of orthogonal and simplex
fingerprints, but they can accommodate more users.

In this paper, we present a new fingerprint design using
optical orthogonal codes (OOC) under distortion assumption.
In the construction, each cyclic shift of binary sequences
in an OOC is arranged as each column of a base matrix.
Then, the Hadamard matrix is employed to extend the base
matrix, and each column of the resulting matrix is used as
each user’s fingerprint. The new fingerprint is motivated by
the Steiner ETF fingerprint [7], but it offers a more flexible
structure. Our fingerprint scheme just needs to remember a
few binary sequences instead of the full base matrix, which
requires less storage space in practical implementation. More-
over, our new fingerprints can provide more parameters for
fingerprint lengths than the ETF fingerprints. Similar to the
ETF fingerprints, our new fingerprints can accommodate a lot
more users than orthogonal and simplex fingerprints. Finally,
the fast Hadamard transform technique can be employed to
improve the speed of construction and detection processes.

This paper is organized as follows. Section II introduces
a mathematical formulation of a fingerprint system. Section
III then presents the new fingerprint construction using optical
orthogonal codes and makes the error analysis. In Section IV,
the detection process of our new fingerprints will be discussed
using the fast Hadamard transform technique. In Section
V, we will give the results of simulations and demonstrate
the performance of our new fingerprint design. Concluding
remarks will be given in Section VI.
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II. MATHEMATICAL FORMULATION

This section reviews a mathematical model of [7] to de-
scribe fingerprint scheme, attack model, and detection process.

A. Fingerprinting and attack model

A host signal is modeled as s = (s0, s1, · · · , sN−1)
T where

si ∈ R, which will be given to M users. In order to deter
illegal distribution, a content owner embeds the host signal
with fingerprints before distribution. Precisely, the mth user’s
copy is

xm = s+ fm

where fm = (f0, f1, · · · , fN−1)
T , fi ∈ R, denotes the mth

fingerprint. Assume that each fingerprint has the equal energy

γ2 = ||fm||2 = NDf (1)

where Df denotes the average energy per dimension of each
fingerprint.

Let K ⊆ {0, · · · ,M − 1} denote a group of users who
forge a copy of the host signal. Then, the linear averaging
attack is of the form

y =
∑

k∈K
αk(s + fk) + ǫ,

∑

k∈K
αk = 1 (2)

where ǫ is a noise vector introduced by the colluders. In (2),
αk is the weight of the kth colluder’s copy in the forgery, and
α = (α0, · · · , αM−1) is a vector of all the colluders’ weights.
Assume that ǫ is a Gaussian noise vector with zero mean and
variance Nσ2, where σ2 is the noise power per dimension. The
strength of the attack noise is measured as the watermark-to-
noise ratio (WNR), which is of the form

WNR = 10 log10

(
NDf

Nσ2

)
.

B. Detection

A focused detection is used to decide whether a particular
user is innocent or guilty in a forgery coalition. In the technical
process, a focused detection computes a test statistic and
performs a binary hypothesis test using the test statistic.

In focused detection, the host signal s is subtracted from
the forgery of (2), which yields

z = y − s =
∑

k∈K
αkfk + ǫ. (3)

The test statistic for the mth user is the normalized inner
product of z and the fingerprint, i.e.,

Tm(z) =
1

γ2
〈z, fm〉 (4)

where γ2 is the fingerprint energy in (1).

For the mth user, let H1(m) denote the guilty hypothesis
(m ∈ K) and H0(m) the innocent hypothesis (m /∈ K). With
a threshold τ , the detection rule is described by

δm(τ) =

{
H1(m), Tm(z) ≥ τ,
H0(m), Tm(z) < τ.

The performance analysis of the focused detection will be
explicitly discussed in Section III.

III. NEW FINGERPRINT DESIGN

In this section, a new fingerprint design using optical
orthogonal codes (OOC) is presented.

A. Optical orthogonal codes

Let a = (a0, · · · , an−1) and b = (b0, · · · , bn−1) be a pair
of binary sequences of period n, where each entry is 0 or 1.
The Hamming correlation function [10] of the sequences is

defined by θa,b(τ) =
∑n−1

t=0 at+τ bt, where 0 ≤ τ ≤ n−1 and
t+ τ is computed modulo n.

Definition 1: [10] An (n,w, λ) optical orthogonal code
(OOC) is a family of S binary sequences of period n, i.e.,
F = {s(i) | 0 ≤ i ≤ S − 1}. In the OOC family F , each
binary sequence has the constant Hamming weight w and the
Hamming correlation satisfies θs(i),s(j) ≤ λ for any (i, j) and
for every τ , where τ 6= 0 if i = j.

B. Modular Golomb rulers

Definition 2: [9] A (v, k) modular Golomb ruler is defined
as a set of k integers (d0, · · · , dk−1) such that all of the
differences {di − dj | 0 ≤ i 6= j ≤ k − 1} are distinct and
nonzero modulo v.

Let G be a k-element set where each element is in
{0, 1, · · · , v − 1}. Define the characteristic sequence of G as
a = (a0, · · · , av−1), where

at =

{
1, if t ∈ G,
0, if t /∈ G.

The set G is called the support of the characteristic sequence a.
If the set G is a (v, k) modular Golomb ruler, the Hamming
autocorrelation clearly satisfies θa(τ) ≤ 1 for any τ 6= 0,
and the Hamming weight of the characteristic sequence is
k. Therefore, the characteristic sequence of a (v, k) modular
Golomb ruler forms a (v, k, 1) OOC with S = 1.

C. New fingerprints using OOCs

Our fingerprint design is motivated to remedy the potential
drawbacks of the Steiner ETF fingerprints [7]. First of all, the
indices of all nonzero entries of the base matrix need to be
remembered in the Steiner ETF fingerprints, which requires
large storage space when the signal dimension N and the
number of users M are large in practice. Second, the base
matrix from the Steiner system is extended by a Hadamard
matrix, which imposes a restriction on the parameters to yield
real-valued fingerprints. Due to the optimal structure of Steiner
systems, the restriction allows relatively few parameters for N
and M in the Steiner ETF fingerprints. More details on the
drawbacks have been discussed in [11].

To provide more parameters for the fingerprint length and
the number of users and to allow efficient implementation with
less storage, we construct new fingerprints using OOCs, which
is the main contribution of this paper. In what follows, we
assume that the entries of the Hadamard matrix H are ±1.

Construction 1: Let {s(i) | 0 ≤ i ≤ S − 1} be a set of S
binary sequences obtained from an (n,w, λ) OOC. For each

sequence s(i), let Ω(i) = {d(i)0 , · · · , d(i)w−1} be its support.
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1) Cyclically shift each sequence s(i) and arrange them
as columns of a base matrix B. Then, the support of
the tth column of B is given by

∆t = {d(⌊
t
n ⌋)

h − t (mod n) | h = 0, 1, · · · , w − 1}
for 0 ≤ t ≤ nS − 1. With L = nS, the n × L base
matrix B is constructed with entries of 0 and 1. The
Hamming weight of each column is w.

2) For small δ, 0 ≤ δ < w, define a positive integer
ν = w + δ such that ν ≡ 0 (mod 4). Then use a
ν × ν Hadamard matrix H to extend the base matrix
B. In each column of B, replace each entry of one by
each distinct row of H, and each entry of zero by all
zero row of length ν. The extension yields an n× νL
matrix Be = [Be,0| · · · |Be,L−1], where Be,j denotes
an n× ν submatrix extended from a single column of
B for 0 ≤ j ≤ L− 1.

3) A new fingerprints system is given by F = 1√
w
Be =

[F0| · · · |FL−1], where Fj =
1√
w
Be,j for 0 ≤ j ≤ L−

1. Each column of F is used as each user’s fingerprint,
which has the entries of 0 and ± 1√

w
. The length of

each fingerprint is N = n and the total number of
available fingerprints is M = νnS.

In fact, Construction 1 was originally presented in [11]
for compressed sensing matrices. It is now applied in new
fingerprint design for low coherence of distinct fingerprints.
In Construction 1, the coherence of F = {fm}M−1

m=0 is defined
as the maximum magnitude of inner products between a pair
of distinct fingerprints, i.e., µ = maxi6=j〈fi, fj〉. The coherence
of F is given by [11]

µ ≤ max

(
λ

w
,

δ

w

)
.

Particularly, if w = O(
√
n) for small λ, δ = O(1), the

fingerprints system F has the coherence of O( 1√
N
). The

coherence of our new fingerprints system is sufficiently low,
but not optimal. However, simulation results demonstrate that
it has slight performance degradation, compared to orthogonal
and simplex fingerprints systems with optimal structure, while
having much more fingerprints available.

In what follows, we present a construction example of
OOCs by employing the modular Golomb rulers obtained from
the Bose-Chowla construction [12]. Then we use the resulting
OOCs to construct new fingerprints. The following definition
of the Bose-Chowla construction is from [13].

Definition 3: [13] Let q = pm for prime p and a positive
integer m. Let β be a primitive element in a finite field GF(q2).
Define

B = {a : 1 ≤ a ≤ q2 − 2 and βa − β ∈ GF(q)}.
Then, B contains q integers which have distinct pairwise
differences modulo q2−1, so this yields a (q2−1, q) modular
Golomb ruler.

Construction 1.1: Let s be the characteristic sequence of
a (q2−1, q) modular Golomb ruler in Definition 3. Then F =
{s} is an (n,w, 1) OOC of family size S = 1, where n =

q2 − 1 and w = q. Set ν = w + δ ≡ 0 (mod 4) for small
δ, 0 ≤ δ < w. With the OOC and a ν × ν Hadamard matrix,
Construction 1 gives an N × M fingerprints system, where
N = q2 − 1 and M = νN . In particular, if q = 2m and
δ = 0, our new fingerprints system has N = 22m − 1, M =
2m(22m − 1), and µ ≤ 1

2m .

D. Error analysis for new fingerprint design

In what follows, our new fingerprints of Constructions 1
and 1.1 are examined by the error probabilities in detection
process, where we use the analysis technique made in [7].
The error analysis then yields almost the same results as those
of [7], replacing the coherence parameter by that of our new
fingerprints.

We analyze two types of errors for detection process, false
positive (type I) and false negative errors (type II). The former
is the probability PI(F,m, τ,K,α) that an innocent user
m (/∈ K) is found guilty (Tm(z) ≥ τ), which should be kept
extremely low. The latter is the probability PII(F,m, τ,K,α)
that a guilty user m (∈ K) is found innocent (Tm(z) < τ). The
error probabilities depend on the fingerprints F, the coalition
K, the weight vector α, and the threshold τ . The formulations
of error analysis in [7] are summarized in Table I.

In Table I, PI(F, τ,α) and PII(F, τ,α) are the worst
case probabilities of type I and type II errors, respectively.
Moreover, the maximum of these two error probabilities is
defined as the worst case error probability of

Pe(F, τ,α) = max{PI(F, τ,α), PII(F, τ,α)}.
By changing the threshold parameter τ to minimize the worst
case error probability, the minmax error probability is defined
as

Pminmax(F,α) = min
τ

Pe(F, τ,α).

Theorem 1 analyzes the worst case probabilities of type I and
type II errors, and then develops the bounds of the minmax
error probability. The proof of Theorem 1 is omitted here, since
it is similar to those of Theorems 7 and 8 in [7].

Theorem 1: Recall γ, Df and σ in Section II. Consider our

new fingerprints system F = {fm}M−1
m=0 , where each fingerprint

has the length of N . Then, the worst case probabilities of type
I and type II errors satisfy

PI(F, τ,α) ≤ Q
[γ
σ
(τ − µ′)

]
,

PII(F, τ,α) ≤ Q

[
γ

σ
(((1 + µ′)max

k∈K
αk − µ′)− τ)

]
.

The minmax error probability can be bounded as

Q

(
d∗low
2

)
≤ Pminmax(F,α) ≤ Q

(
d∗up
2

)

where

d∗low =

√
M

M−1

√
NDf

σ
√

K(K − 1)
,

d∗up =

√
NDf

σK
(1− (2K − 1)µ′)
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TABLE I. FORMULATIONS OF ERROR ANALYSIS

False positive error False negative error

PI(F,m, τ,K,α) = Prob[Tm(z) ≥ τ | H0(m)] PII(F,m, τ,K,α) = Prob[Tm(z) < τ | H1(m)]
Pfa(F, τ,K,α) = maxm/∈K PI(F,m, τ,K,α) Pmd(F, τ,K,α) = minm∈K PII(F,m, τ,K,α)

PI(F, τ,α) = maxK Pfa(F, τ,K,α) PII(F, τ,α) = maxK Pmd(F, τ,K,α)
− Pd(F, τ,K,α) = 1 − Pmd(F, τ,K,α)

where Q(x) = 1√
2π

∫∞
x

e−
u2

2 du and K is the number of

colluders. In the above bounds, µ′ = max
(
λ
w
, δ
w

)
for Con-

struction 1, whereas µ′ = 1
q

for Construction 1.1.

IV. FAST PROCESSING IN DETECTION

This section describes how to apply the fast processing
technique in detection process for our new fingerprints design.
In Construction 1, a ν× ν Hadamard matrix is used to extend
each column of the base matrix. Then, each fingerprint of
length N has only w nonzero entries, which may reduce the
computational complexity, since only a few nonzero entries
of a fingerprint are involved in the detection process. In
this section, we discuss fast detection for the fingerprints
presented in Construction 1.1. Note that it is a particular
example of Construction 1 when the number of cyclically
distinct binary sequences equals to 1 (S = 1). Therefore, the
fast detection process discussed below can be easily extended
for Construction 1.

In Construction 1.1, the fingerprints system is presented
as a matrix F = {fm}M−1

m=0 = [f0 | f1 | · · · |fM−1],
where each column fi represents the i th user’s fingerprint
for 0 ≤ i ≤ M − 1. The length of the fingerprint is N ,
and M users are accommodated in total. In Construction 1,
recall that the support of the first column of the base matrix is

d(0) = {d(0)0 , · · · , d(0)w−1}, which yields the support of the kth
column of the base matrix as

d(k) = {d(0)h − k (mod N) | h = 0, 1, · · · , w − 1} (5)

where 0 ≤ k ≤ N − 1 and w is the Hamming weight.

In the fingerprints F, let us define an N × ν subsystem
Fk = [fkν | · · · | f(k+1)ν−1] from which F = [F0 | · · · |
FN−1]. Then, the fingerprints of Fk share the same support

d(k) in (5) as they are from a common sequence. Moreover,

all the nonzero entries of Fk form a w × ν matrix 1√
w
H̃ =

1√
w
[h0 | · · · | hν−1], where hi is the ith column of H̃, 0 ≤

i ≤ ν − 1. Clearly, each row of H̃ is from a ν × ν Hadamard
matrix.

In detection process, let tkν+j be the (kν + j)th user’s
test statistic, where 0 ≤ j ≤ ν − 1. From (4), tkν+j is the
normalized inner product of the fingerprint fkν+j and z in (3).
In order to reduce the computational complexity, extracting the
nonzero entries from fkν+j allows to write tkν+j as

tkν+j =
1

γ2
√
w
〈hj , zd(k)〉, 0 ≤ j ≤ ν − 1

where zd(k) is a w × 1 vector that takes only w entries out
of z from the indices of the support d(k). Finally, a ν × 1
vector tk = [tkν , · · · , t(k+1)ν−1]

T , a set of test statistics of
ν users having their fingerprints {fkν , · · · , f(k+1)ν−1}, can be
computed as

tk =
1

γ2
√
w
H̃T zd(k) . (6)

In (6), the matrix-vector multiplication has the computational

complexity of O(ν2). Since H̃ is a partial Hadamard matrix,
one can employ the fast Hadamard transform technique [14]
for (6), which will reduce the complexity to O(ν log2 ν).
Therefore, the computational complexity of all the users’ test
statistics turns out to be O(νN log2 ν), or O(M log2 ν). In
practice, the fast processing technique improves the speed of
detection and construction.

V. SIMULATION RESULTS

In order to measure the robustness of various fingerprint
systems, we compare the maximum number of colluders which
can be tolerated. The probability of detecting at least one
colluder, denoted as Pd, will be plotted as a function of the
number of colluders K . In detection process, the threshold τ
is chosen to guarantee reasonably low Pfa. We assume that
a fingerprint system requires Pd ≥ 0.8 and Pfa ≤ 10−3 [5],
since higher Pd and lower Pfa are necessary to guarantee the
robustness of the system.

In this section, we compare the performance of orthogonal,
simplex and new fingerprint systems for N = 4095. The
orthogonal fingerprints have each column of an identity matrix
as each user’s fingerprint, where the total number of users
equals to M = N . We use simplex fingerprints having the
same power (γ) and the same inner product (− 1

N
) [13], where

M = N+1. Our fingerprints are from Construction 1.1, where
q = 64, δ = 0, ν = q, and M = νN . While orthogonal
and simplex fingerprints accommodate 4095 and 4096 users,
respectively, our fingerprints can support much more users up
to 262, 080− about 64 times more. Due to technical difficulties
in simulation, only 32, 768 fingerprints have been simulated.

In experiments, total 3000 averaging attacks were simu-
lated for each fingerprint system and collusion size K . Col-
luders were chosen randomly, and their copies were uniformly
averaged to form a forgery. The Gaussian noise with power
σ2 per dimension was added to the forged copy. A threshold
τ was chosen to ensure Pfa ≤ 10−3. For each attack, Pd was
measured by detecting every user in the fingerprint system.

Figure 1 displays Pd as a function of collusion size K
for orthogonal, simplex and our new fingerprints, where WNR
is 0 dB and −5 dB, respectively. Clearly, Pd approaches 0
as the number of colluders increases. The maximum num-
bers of colluders that can be tolerated by orthogonal and
simplex fingerprint systems are similar to each other, and
approximately one or two more users are tolerated than in our
new fingerprint system. Overall, our new fingerprints system
accommodates a lot more users at the cost of slightly worse
detection performance, compared to orthogonal and simplex
fingerprints. Figure 1 (a) and (b) show that the performance
gap between our new fingerprints and the other two gets
tighter as the noise level increases. We have also examined
the performance for N = {63, 255, 1023}, where we observed
the similar trend.
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(b) WNR = −5 dB

Fig. 1. The probability of detecting at least one colluder Pd as a function
of the number of colluders K , where N = 4095 and WNR = 0 dB and −5

dB, respectively.

In summary, simulation results showed that our new fin-
gerprints system could support a huge number of users, about
64 times more than conventional systems, at the cost of
slight performance degradation. Therefore, the new fingerprints
system looks favorable to accommodate a large number of
users in case a small number of potential colluders exist in
noisy environment.

VI. CONCLUSIONS

This paper has presented a new fingerprint design using
optical orthogonal codes. Compared to ETF fingerprints, our
new fingerprint design offers flexible structure which pro-
vides more parameters and requires less storage. Also, our
new fingerprints system accommodates much more users than
orthogonal and simplex fingerprints, at the cost of slight
performance degradation. In practice, fast detection processing
with low complexity can be achieved by means of the fast
Hadamard transform technique.
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