
Automated Generation of Mixed Integer Programming
for Scheduling Problems based on Petri Nets

Ryosuke Ushijima1 Andrea Veronica Porco2, Hideki Kinjo3 and Morikazu Nakamura4
1,2,4Department of Information Engineering, University of the Ryukyus

1 Senbaru, Nishihara, Okinawa 903-0213, Japan
3Department of Law and Economics, Okinawa University

555 Kokuba, Naha, Okinawa 902-8521, Japan
E-mail : 3kin@okinawa-u.ac.jp, 4morikazu@ie.u-ryukyu.ac.jp

Abstract: This paper proposes a scheme for automated
generation of a mixed-integer programming for scheduling
problems based on timed Petri nets. Our tool reads XML-
based Petri net data, extract precedence and conflict relations
among transitions and then generates a mixed integer pro-
gramming for the target scheduling problem. Therefore, once
users model their system with Petri nets, they can address the
scheduling problem for efficient operations. For implementa-
tion, we use CPN Tools, a well-known tool for editing, simu-
lating and analyzing Colored Petri nets, for modeling. Users
can model their systems with CPN Tools and then generate a
mixed-integer programming problem for scheduling.

Keywords— Petri net, Scheduling Problem, Mathematical Program-
ming

1. Introduction
Petri nets are a well-known mathematical modeling language
for concurrent systems, where the concurrent systems include
much variety of systems such as parallel/distributed systems,
network systems, production systems, collaborative robots,
and many others [1]. Petri nets are mathematically power-
ful for analysis of characteristics of modeled systems and are
also a graphically understandable for the system’s structure
and behavior. Once we know a limited number of simple rules
on Petri nets, we can start system modeling.

Scheduling problems are important research topics in op-
erations research and computer science, where many re-
searchers investigate algorithms to solve exactly or approx-
imately scheduling problems because of NP-hardness of
them[7], [8], [9], [6]. The problems are also valuable in
practice since the problems are applicable in a broad range
of fields. Recent advancement of optimization algorithms
makes us solve exactly scheduling problems of practical size
even if the problem is NP-hard. There are very efficient com-
mercial optimization tools, such as CPLEX[10] and Gurobi
Optimizer[11] and also freeware tools. However, only big
companies benefit from this optimization approach. The rea-
son for limited usage is not only an economical reason, but
also usability. Users need to formulate their problems firstly
as mathematical programming problems with mathematics.
Therefore, an only limited quantity of users can utilize these
tools.

In this paper, we present automated generation of mixed-
integer programming for scheduling problems by making use
of Petri nets. Users just need to model their target system with

Petri nets and set necessary information for operations. Our
proposed tool generates the mathematical programming prob-
lem for scheduling of the system, and then we utilize some
optimization tool to solve the generated problem.

There are many Petri net based scheduling researches [3],
[4], [5].

2. Timed Petri Nets
A Petri net is a 4 tuple PN = (P, T,Pre,Post) where

P = {p1, p2, ..., pn} and T = {t1, t2, ..., tm} are a set of
places and a set of transitions, respectively. Pre(p, t) and
Post(p, t) express the weights on the arc from place p to tran-
sition t and from transition t to place p, respectively. A mark-
ing M tr = (M(p1),M(p2), ...,M(pn)) represents a token
distribution on places, that is, M(pi) is the number of tokens
in place pi. Here tr shows the transpose of a matrix. The ini-
tial marking M0 shows the initial state of the corresponding
system. We call p an input place of t when Pre(p, t) > 0 and
an output place when Post(p, t) > 0. Transition t is enabled
at M when M(p) ≥ Pre(p, t), ∀p ∈ •t and a transition can
be fired when it is enabled, where •t shows the set of all the
input places of t. On t’s firing, Pre(p, t) of tokens in each
input place p should be removed and Post(p, t) of tokens are
added to each output place p. In Petri net models, a transition
t corresponds to an event, and its firing represents the occur-
rence of the event in the system. Dynamical behavior of a
system by event occurrence can be represented by dynamic
changing of token distribution by firing in Petri nets.

For quantitative analysis of the dynamical behavior of a
system, many researchers introduced time to Petri nets. We
can categorize the way of timing into three types, FD (Firing
Duration), HD (Holding Duration), and ED (Enabling Dura-
tion). The FD is to assign time to transitions, where the firing
of transition takes time. The HD is referred as place time
Petri nets, where tokens cannot be used for firing for a partic-
ular period after located in the place. The last one, the ED, is
such that a transition cannot be fired for a given period after
enabled [3], [4], [5]. In this paper, we consider timed Petri
nets with FD because of intuitively easiness.

Timed Petri nets are a six-tuple TPN =
(P, T,Pre,Post , TS,D), where TS is a set of time
stamps, usually we use the set of positive real numbers, and
D : T → TS is a function to show the duration time of
transition t ∈ T . Tokens are attached a time stamp in TS
when they are generated. In the timed Petri net, transition t is
enabled at time τ when each input place of t has more than or

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

287

equal to Pre(p, t) tokens and its time stamp is no more than
τ . By firing of t at time τ , the token distribution should be
changed according to the same rule of the Petri net described
above except that we attach the time stamp τj +D[t] to each
output token.

More details are explained in the literature [1].

3. Scheduling Problems
A scheduling problem is a 6-tuple SP =

(TASK ,RS ,RR,PRE ,RT ,PT), where TASK is a set
of tasks, RS is a set of resources, RR : TASK → RS
is a function which maps a task to its required resource,
PRE ⊆ TASK × TASK is the precedence relation
between two tasks, TS is the time set, usually the nat-
ural number set or the non-negative real number set.
RT : TASK → TS is a function to show the release time
of a task, PT : TASK → TS is a function to return the
processing time of tasks.

We assume in this paper the followings in the scheduling
problem:

1. No resource can process more than one task at a time.

2. Each resource is always available for processing, that is,
no breakdown.

3. Operations can not be interrupted untill their comple-
tion, that is, no preemption.

4. The processing times are known in advance and they are
deterministic.

For the scheduling problem, we verified the feasibility of
the problem [3], [6].

Proposition 1: A schedule is feasible if the following con-
straints are satisfied:

1. All the precedence relations are satisfied: ∀(t, t′) ∈
PRE , ct(t) ≤ st(t′).

2. The release time conditions are satisfied: ∀t ∈
TASK , st(t) ≥ RT (t).

3. There exist no resource conflicts: ∀t, t′ ∈
TASK , (ct(t) ≤ st(t′) ∨ ct(t′) ≤ st(t)) if
RR(t) = RR(t′),

where st(t) and ct(t) represent the start time and the comple-
tion time of task t, respectively.

Proof: The proposition holds since the three constraints
explain direcly the definition of the scheduling problem.

When we solve scheduling problems, we need to specify
the objective function. Usually we minimize the makespan,
that is, the longest completion time of any task in TASK.

4. Petri Net Models of Scheduling Problems
A scheduling problem SP = (TASK , RS , RR, PRE , RT ,
PT) can be modeled by a timed Petri net TPN = (P , T ,
Pre, Post , TS, D). Table 1 shows rough correspondence
between SP and TPN. TASK corresponds to T in TPN. RS
maps tasks to places named Mi, and so on. We can easily
model a scheduling problem with a timed Petri net.

Table 1. Rough Correspondence between SP and TPN
Scheduling Problem SP Timed Petri Net TPN
TASK T
RS places named Mi

RR Pre and Post (Coloured Arcs)
PRE Pre and Post (Black Arcs)
RT Additional Comments
PT D

Let us consider a jobshop scheduling problem in which 4
jobs {J1, J2, J3, J4} and each job Ji has 3 tasks ti,1, ti,2, ti,3,
therefore, TASKS = {ti,j |i = 1, 2, 3, 4, j = 1, 2, 3},
RS = {M1,M2,M3}, PRE = {(ti,1, ti,2), (ti,2, ti,3)|i =
1, 2, 3, 4}, RT (t) = 0, ∀t ∈ TASK . The problem is re-
garded as a jobshop scheduling problem in general cases of
RR, while it is called flowshop when RR(ti,j) = Mj , ∀i, j.

Figures 1 and 2 show a timed Petri net model of flow-shop
and job-shop scheduling problems, respectively. The natural
number below a transition expresses its duration time. For
example, the duration time of t1,1 equals 3. In the figures,
places named M1,M2,M3 correspond to resources, that is,
machines in the production systems. The number of each ma-
chine is just one as shown by the number of tokens in each
resource place. Job Jj , j = 1, ..., 4 has three tasks denoted by
transitions tj,1, tj,2, and tj,3. Places pj,i and pj,i+1 mean the
pre-condition and the post-condition of task tji, respectively.

From this process, we can confirm that users can model
scheduling problems with the timed Petri net much easier
than mathematical ways. Moreover, Petri net models are in-
tuitively understandable.

p1,1 p1,2 p1,3 p1,4

p2,1

p31

p4,1

p2,2

p3,2

p4,2

p2,3

p3,3

p4,3 p4,4

p3,4

p2,4

M1 M2 M3

t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

t3,1 t3,2
t3,3

t4,1 t4,2 t4,3

+3

+4

+5

+6

+2

+8

+4

+6

+9

+6

+3

+1

0.00

0.00

0.00

0.00

Figure 1. Flow-shop Scheduling Problem

5. Mathematical Programming Generation
We first generate resource information for each job j, j =
1, 2, ..., n, Rj = (r1j , r

2
j , r

3
j , ..., r

m
j), where job j is composed

of m tasks, and the i-th task of job j needs to use resource rij .

288

p1,1 p1,2 p1,3 p1,4

p2,1

p3,1

p4,1

p2,2

p3,2

p4,2

p2,3

p3,3

p4,3 p4,4

p3,4

p2,4

M1 M2 M3

t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

t3,1 t3,2 t3,3

t4,1 t4,2 t4,3

+3

+4

+5

+6

+2

+8

+4

+6

+9

+6

+3

+1

0.00

0.00

0.00

0.00

Figure 2. Job-shop Scheduling Problem

The resource information can be extracted from the Petri net
structure.

We introduce real valued variables sj,rij to represent the
starting time of job j’s i-th task which requires resource rij .
Let us denote the duration time of task tj,i by D[tj,i]. There-
fore, the precedence relation among tasks in job j specified in
the 1-st constraint of Proposition 1 is represented by

sj,rij +D[tj,i] ≤ sj,ri+1
j

, (1)

∀j = 1, 2, ..., n, ∀i = 1, 2, ...,m− 1. (2)

The constraints can be derived directly from the subnets cor-
responding to each job. Each of the subnets is a connected
component of the graph constructed by removing the resource
places and all the arcs connected to the places.

The second constraint of Proposition 1 is simple. If we
need to set available starting time eti,j for task i, j, the fol-
lowing constraints are added.

sj,rij ≥ eti,j , ∀i,j (3)

The third constraint of Proposition 1 requires no conflict
usage for all the resources. That is, each machine should be
used by a single task at a time. By introducing binary variable
xi
jk,jh

, ∀i, ∀jk, jh ∈ J×J, we represent the order for the same
resource usage between each pair of jobs.

sj1,i ≥ sj2,i +D[tj2,i], if xi
j1,j2 = 0 (4)

sj2,i ≥ sj1,i +D[tj1,i], otherwise (5)
xi
j1,j2 ∈ {0, 1}, ∀j1, j2, j1 < j2, ∀i = 1, ...,m, (6)

These constraints can be represented by the following lin-
ear equations by using a sufficiently large number H .

sj1,i ≥ sj2,i +D[tj2,i]−H · xi
j1,j2 (7)

sj2,i ≥ sj1,i +D[tj1,i]−H · (1− xi
j1,j2) (8)

xi
j1,j2 ∈ {0, 1}, ∀j1 < j2,∀i = 1, ...,m. (9)

For H , the following value can be used.

H =
n∑

j=1

m∑
i=1

D[ti,j] (10)

We have all the constraints for feasible solutions specified
in Proposition 1 and we confirmed that the constraints are the
same as the ones shown in [8], [9], [6].

Corollary 1: A schedule s = (si,j , ∀i, j) is feasible for a
given timed Petri net if the constraints shown in (1) to (3) and
in (7) to (10) are satisfied.

6. Implementation with CPNTools
We implemented the automated mathematical program-

ming generation based on CPN Tools[2]. Petri net models
drawn with CPN Tools can be exported to XML documents.
Figure 3 shows an example of the XML documents. The
XML documents include not only their structural data but
also attribute information such as time, arc weights, guard
conditions, and functions. Therefore, we can easily construct
mathematical programming problems of the scheduling prob-
lem from net models of scheduling problems.

Algorithm 1 shows the steps for automatic generation of a
mixed integer programming for scheduling problems. We im-
plemented the algorithm with a programming language Ruby
2.2.1.

Algorithm 1 SchedulingMIPGeneration
1: read the XML document.
2: extract the place and the transition IDs and their attribute

information.
3: extract the arc IDs and their attribute information such as

weight, link information.
4: construct PRE from the link information.
5: construct RR from the link information between a re-

source place and a transition.
6: generate all the precedence constraints ∀t and t′ ∈ PRE .
7: generate release time constraints if specified.
8: generate all no-resource-conflict constraints from RR.
9: generate the objective function.

Once we generate a mixed integer programming, we can
solve the problem with a solver such as CPLEX and Gurobi
Optimizer.

Figures 4 and 5 depict the Petri net models of the scheduled
flow-shop and job-shop systems for the problems shown in
Figs. 1 and 2, respectively.

289

XML� �
<place id="ID1412323818">

...........
<trans id="ID1412323829"

...........
<time id="ID1412323831">

<text tool="CPN Tools"
version="4.0.1">@+3</text>

...........
<arc id="ID1412324853"

orientation="PtoT"
order="1">

...........
<transend idref="ID1412323829"/>
<placeend idref="ID1412323818"/>� �

Figure 3. XML Document generated by CPN Tools

Figure 4. Net Model of Scheduled Flowshop System

7. Concluding Remarks
This paper proposed a scheme for automated generation of

mixed-integer programming for scheduling problems based
on Petri nets. Our developed tool reads XML-based Petri net
data, analyzes precedence and conflict relations among tran-
sitions and then generates a mixed integer programming for
the target scheduling problem. The scheduling problem we
considered in this paper is limited by several assumptions. As
future works, we will relax some of them for more practical
usability.

References

[1] T. Murata, “Petri Nets: Properties, Analysis and Appli-
cations”, Proceedings of the IEEE, Vol. 77, pp. 541-580,
1989.

[2] Kurt Jensen, Lars Michael Kristensen, Lisa Wells,
”Coloured Petri Nets and CPN Tools for modeling and

Figure 5. Net Model of Scheduled Jobshop System

validation of concurrent systems, International Journal of
Software Tools Technology Transfer, vol. 9, pp.213-254,
2007.

[3] W. M. P. van der Aalst, “Petri net based scheduling”,
Operations-Research-Spektrum, Volume 18, Issue 4, pp
219-229, 1996.

[4] Mušič, Gašsper, “Schedule optimization based on
coloured Petri nets and local search”, Proc. of the 7th
Vienna International Conference on Mathematical Mod-
elling, Mathematical Modelling , Volume 7, Part 1, pp.352-
357, 2002.

[5] M.A. Piera, G. Mušič, “Coloured Petri net scheduling
models: Timed state space exploration shortages”, Mathe-
matics and Computers in Simulation, Volume 82, Issue 3,
Pages 428-441, 2011.

[6] Wen-Yang Ku, J. Christopher Beck, “Mixed Integer Pro-
gramming models for job shop scheduling: A computa-
tional analysis”, Computers & Operations Research, vol.
73, pp.165-173, 2016.

[7] Ahmet B. Keha, Ketan Khowala, John W. Fowler, “Mixed
integer programming formulations for single machine
scheduling problems”, Computers & Industrial Engineer-
ing, vol. 56, pp. 357-367, 2009.

[8] Jason Chao-Hsien Pana, Jen-Shiang Chenb,“Mixed bi-
nary integer programming formulations for the reen-
trant job shop scheduling problem”, Volume 32, Issue 5,
pp.1197-1212, 2005.

[9] Débora P. Ronconi, Ernesto G. Birgin, “Mixed-Integer
Programming Models for Flowshop Scheduling Problems
Minimizing the Total Earliness and Tardiness”, Just-in-
Time Systems, Springer Optimization and Its Applica-
tions, pp. 91-105, 2012.

[10] CPLEX Optimizer, http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/.

[11] GUROBI Optimizer, http://www.gurobi.com.

290

