
Virtual Machine Failure Prediction using Log
Analysis

Sukhyun Nam, Jibum Hong, Jae-Hyoung Yoo, and James Won-Ki Hong

Department of Computer Science and Engineering, POSTECH, Pohang, Korea
{obiwan96, hosewq, jhyoo78, jwkhong}@postech.ac.kr

Abstract—In this study, we propose a machine learning model
that predicts failures by analyzing logs before failures occur in
virtual machines (VMs) used in network function virtualization
(NFV) environments. The proposed model utilizes convolutional
neural network (CNN) and includes pre-processing and pre-
failure tagging techniques. We collected log data from VMs
built on OpenStack to validate the proposed model. We classified
failures based on early fault messages and built a CNN model to
predict VM failures. The experimental results showed that the
proposed model can predict failures before 5 minutes with the F1
score of 0.67. The proposed model will be used for VM proactive
live migration to avoid service degradation and interruptions
caused by failures.

Index Terms—VNF, failure prediction, machine learning

I. INTRODUCTION

Today’s networks are becoming larger in size and more
complex in structure. The advent of software-defined net-
working (SDN) and network function virtualization (NFV)
technologies has reduced CAPEX/OPEX, but the complex
virtual structures have made it more difficult to monitor
and take action on virtual network and server failures. To
address this problem, many studies are underway for anomaly
detection in SDN/NFV environments, but there is a lack of
research on technologies that proactively predict failures in
servers, virtual machines (VMs), and virtual network functions
(VNFs) to take action before failures occur.

The failure prediction problem in NFV is challenging for
several reasons. First, owing to the complexity of large-scale
network systems, failures can be caused by many hetero-
geneous software and hardware faults. Second, the failure
data are usually highly unbalanced. For example, Microsoft
cloud services reported that each day, less than 0.1% of
nodes encounter failures [2]. Unbalanced data lead to a poor
performance of the prediction model. Third, it is difficult
to determine the symptoms of failures from a large number
of data indicating the state of the network equipment. In
the case of log data, for example, modern cloud systems
produce approximately 30-50 gigabytes (approximately 120-
200 million lines) of logs per hour [3]. However, most failures
have associated symptoms, and recent advances in machine
learning technologies have made it possible to analyze huge
numbers of complicated data.

Mandelbug [4] is a type of fault with a complex activation
and propagation; thus, it is difficult to reproduce and incurs a
high possibility of a time lag between a fault activation and a

failure occurrence. Based on an empirical study on bug reports
in a Linux kernel [1], network faults are more likely to be of
Mandelbug type because networking is regarded as a basic
and core function from an operating system aspect, and thus
its interaction is more complex and tight. The average time
required to fix Mandelbug is longer than that of regular bugs
[1]. Therefore, faults and failures in networks and servers are
dangerous and can cause serious losses to service operators.
For example, faults in clouds deployed on OpenStack can take
hours or even days to fix [?]. However, most failures have
previous faults or errors before they occur. Failures based on
fault events can be predicted if failures have former faults. In
the case of VNF, if we can predict a failure in advance, we
can migrate the VNF to another server before a failure occurs
to minimize the service quality degradation.

Faults and errors of computer equipment can be found in
the log. Most server and network equipment provide real-time
log output (e.g., syslog). Some studies are underway to harness
logs in network management [5]–[8]. However, as the software
structure of servers and networks has become more complex,
the amount of logs has increased proportionally. Since most
log data is not systematically generated, automatic analysis of
log data remains a fairly challenging task.

In a log analysis, sentence classification techniques using
natural language processing (NLP) techniques are applied.
Sentence classification is the field of analyzing textual doc-
uments such as movie reviews to determine likes and dislikes
of movies, or to classify documents according to predefined
criteria such as spam mail classification. Unlike other NLP
fields where recurrent neural networks (RNNs) are strong
because of the importance of word order, convolutional neural
networks (CNNs) are mainly used to analyze how each word
affects the classification results [9].

In this paper, we propose a CNN based VM failure pre-
diction model which uses logs extracted from each VM as
input values. The model predicts the failure with former fault
messages. The model includes pre-processing techniques for
log analysis such as log based word embedding and pre-failure
tagging techniques.

To validate the feasibility of the proposed model, we trained
the model with logs collected from VMs for a month in an
NFV environment. The experimental results showed that the
F1 score was 0.67 to predict the failure in 5 minutes.

©Copyright IEICE - APNOMS 2021 279

II. RELATED WORK

A. Faults and Failures

Because computer systems are extremely complex, the
causes of failures also vary widely, and thus the ways to
cope with them are different. In general, faults are classified
as Bohrbug and Mandelbug faults [4]. Whereas Bohrbug
faults can be easily isolated and reproduced, Mandelbug is an
opposite terminology whose activation and propagation appear
non-deterministic and is complex. In addition, Mandelbug
faults have two possible cases that are not mutually exclusive
[4]: First, such a fault causes a failure that is influenced
by other elements (e.g., operating system or hardware) of
the software system. Second, the complexity of the error
propagation results in a time lag between fault activation and
final failure occurrences. In the Mandelbug sub-classification
system proposed by [10], LAG and ARB correspond to the
second case, which has a delay in failure occurrence.

• ARB (Aging Related Bug) : A kind of bug that can cause
an increasing failure rate and/or degraded performance,
known as software aging. This represents a situation in
which the error state is generated slowly due to overloads,
like continuous memory leaks or an increase in total
system runtime.

• LAG : A kind of bug that is non-aging related Mandelbug
(NAM), but there exists a time lag between the activation
of the bug and the occurrence of its failure.

In either case, the error conditions do not immediately lead
to failures. These features provide the possibility of predicting
a failure through faults. In this study, we classified ARB and
LAG from the failures we collected, based on error logs, to
determine whether faults existed before a failure. We then
utilize the failures classified as LAG and ARB for CNN model
learning.

B. Sentence Classification and Log Analysis

Y. Kim [9] proposed to use a CNN model in a sentence
classification problem. This work used the word embedding
[11], a technique for representing words as dense vectors to
use sentences as input features for CNN. The author generated
sentence vectors via a concatenation process with generated
word embedding vectors. The generated sentence vector was
input through a convolution layer. The filters used in the
convolution layers used the dimension of the product of the
filter size h and size of embedding vectors k, that is hk.
Because the length of the input sentence is varying, the
dimension of the vector generated at this point is not constant.
So max-pooling layer takes the maximum value for each vector
generated from a filter. Finally, feature values are generated
with the number of filters and are passed to a fully connected
softmax layer whose output is the probability distribution over
labels. Although the proposed CNN model’s performance was
not significantly superior to that of the other algorithms (e.g.,
RNN-based and SVM algorithms), it showed a slightly better
performance than the other models despite being built using

the simplest form of a CNN, which indicates that a CNN fits
the sentence classification problems.

Du et al. [8] proposed a contextual anomaly detection model
using a deep neural network (DNN) to learn log patterns from
a normal execution and detect anomalies when log patterns
deviate from the model. They parsed each log entry into a
log key and parameter value vector and trained two parallel
models as multiclass classifiers with a log key and parameter
value vector. Their model showed an F1-score of 0.98 with
the OpenStack log data set.

W. Ji et al. [7] proposed a CNN model that collected log
data from wireless communication systems in a simulation
environment to predict whether log data after a constant gap
contained failure messages. In this work, the authors used the
pre-processing technique which removed both symbols and
numbers in the log data. The CNN model was based on the
model in [9]. This work was compared to models using long
short-term memory (LSTM) and gated recurrent units (GRU)
for performance verification of the proposed CNN model,
where the result showed that the CNN model showed slightly
higher performance than the LSTM and GRU model. The
learning results showed an accuracy of about 0.75 when the
gap was 2000, and an accuracy of about 0.57 when the gap
was 5000. The problem is that the time difference between the
failure occurrence and input window is not constant because
the unit of the gap is defined as the number of log messages. In
particular, since more log messages are generated when faults
occur, the time difference with the prediction target is further
reduced, resulting in a more urgent prediction.

Thus, in our research, we used time (minutes) as a unit of
the gap to stabilize the time difference from the prediction
target. We also used a similar model with the CNN model
from [9], but we added pre-failure tagging steps in the data
tagging stage to generate more suitable data for log analysis.

III. DESIGN AND IMPLEMENTATION

This section describes the design of the proposed failure
prediction model and CNN model.

A. CNN based VM failure prediction model

We propose a model that uses log data to predict and alert
failure risks in VM. The proposed model uses a time-based
gap until the prediction point. The proposed CNN based VM
failure prediction model structure is shown in Figure 1.

As a testbed for collecting log data, we used NFV infrastruc-
ture (NFVI) built using OpenStack. This NFVI environment
operates a variety of VNFs (e.g., IDS, firewall) to provide
network services. Each VM passes logs from VNF, system
daemon, and kernel to the monitoring node using rsyslog [12].

The monitoring node extracts data of a pre-defined input
window size from the collected log data using timestamp (i.e.
logs in the last 10 minutes). Extracted data go through the
pre-processing step and is transmitted to the AI node. AI node
contains pre-trained word embedding and CNN model. In the
AI node, the log data passed from the monitoring node is
converted to word embedding vectors and used as input for

©Copyright IEICE - APNOMS 2021 280

the CNN model. CNN calculates the probability that a failure
occurs after a gap of minutes based on input and passes it to
the control node when that probability crosses the predefined
threshold. The control node can then move the VNF to another
server to prevent the failure before the failure occurs through
VM live migration.

B. Input Data

We used sliding windows with an input window size of
minutes to obtain the input sequence from the logs. We
removed the numbers and replaced the symbols with spaces,
removing the VM information, time, and application names
from the logs. Fig. 2 illustrates an example of logs that
have been pre-processed. In addition, if there were duplicate
sentences in the window, they were removed, leaving only one
sentence.

The generated log corpus was converted into log embedding
through word embedding before being entering the CNN
model. Because word embedding learns similarity through
words that are together within sentences during the learning
phase, public word embeddings are unsuitable for a log analy-
sis. Therefore, we applied a word embedding generated using
our log corpus data. For word embedding learning, we used
Google’s open-source project word2vec [13] and collected a
log corpus for 1-month period from six VMs and servers in
our testbed. We set the minimum count to learn only the words
that appeared more than once in the daily log for each VM.
We used Skip-gram as an embedding algorithm, and we set the
vector size to 100 and window size to 5. The generated word
embedding contained 265,452 words. Based on the results, for
example, the closest words to ”err” were ”over”, ”dropped”,
”rx”, ”crc”, ”tx”, ”collison” and ”miss.”

C. Convolutional Neural Network

We build a CNN model based on the CNN model from [9].
Figure 3 represents the CNN model and inputs and outputs
used in our work. Generated word embedding goes through a
convolutional layer, which consists of several types of filters.
We set the number of filter types to binput window size/2c+1
because the larger the input value, the more necessary the
filter is, and the size of the filter starts at 3 and grows by 1.

Fig. 1. CNN based VM failure prediction model

According to [14], using the max-pooling layer for a CNN
in the sentence classification problem showed the highest per-
formance; therefore, we also used the max-pooling layer. The
max-pooling layer produces a vector with the same number of
dimensions as the number of filters. We then put the vector
into the fully-connected layer and dropout layer. A dropout
layer was used to prevent an overfitting. In addition, we used
Sigmoid as an activation function in the fully-connected layer
to calculate the probability of a failure occurring as a value
between zero and 1.

D. Output Tagging

Learning the CNN model requires a label for each input
window. Similar to the general classification problem, we
tagged each input window to 1 if it was related to failure, and
0 if the state would be normal. We tagged based on failure
history, which is data recorded every minute whether each VM
was failed or in a normal state. Each input window was tagged
whether a failure occurs after the gap minutes according to the
failure history.

We could further increase the performance through the a
pre-failure tagging method, which tags the states before the
failure occurred as a pre-failure rather than as normal. Fig. 4
shows the difference between regular tagging and pre-failure
tagging. In this illustration, with regular tagging, Windows
1 through 4 are tagged as zero because the state is normal
after gap minutes, and Window 5 is tagged as 1. However,
error messages associated with the failure (in this case, ”Failed
to retrieve unit state: Connection timed out”) are included
in all windows from Window1 through Window5. Owing to
the nature of a CNN, which extracts only important features
regardless of the order of the words, error messages are highly
likely to not be recognized as the cause of the failure because
Window 1 through 4 are learned to output a value of zero.
Therefore, we tagged the normal states as pre-failure states
during the pre-failure size minutes just before the occurrence
of a failure. In addition, we tagged windows with a pre-failure
state as a pre-failure value, which is a value between zero and
1. Therefore, in our model, the CNN can learn about the error
message even if there is no failure after the gap. We conducted
experiments to determine which values were appropriate for
the pre-failure size and pre-failure value.

To ensure that the changed tagging method is applied
to learning, we utilize the following KL divergence-based
loss function. ytrue represents the tagged values, and ypred

Fig. 2. Pre-processing example

©Copyright IEICE - APNOMS 2021 281

Fig. 3. CNN model design

represents the output of CNN. We also applied class weights
to handle unblanched data, which will be explained later.

loss = ytrue × log
(

ytrue

ypred

)
× ClassWeight1 + (1 −

ytrue)× log
(

1−ytrue

1−ypred

)
× ClassWeight0

With the pre-failure tagging method, windows near failure
will output values that are close to pre-failure values, but must
be tagged as normal. So we set the threshold of failure as pre-
failure value+0.05 so that the window’s output does not exceed
the threshold.

IV. EXPERIMENT AND EVALUATION

In this section, we describe the experiments we conducted to
verify the suitability of the proposed model and CNN models
and describe the results.

A. Data Collection

We conduct experiments by building the NFVI described
in Chapter 3. The NFVI consists of three servers that take
on compute nodes and two servers take on for monitoring
node and controller node respectively. Each compute node
also contains VMs to run VNF and to serve as clients and
servers. We installed six different VNFs (Suricata, HAProxy,
iptables, ntopng, nDPI and Snort) on each VM to output
various logs, and also to create different situation. We changed
the specification of each VM in response to each VNF’s
requirement.

We generated multiple client–VNF-server chains that utilize
each VNF as a single service, allowing each VNF to handle the

Fig. 4. Regular tagging and pre-failure tagging

Fig. 5. VM state tagging DFA

traffic. We used the Apache web server as the server. We need
to check the status of VMs, so we sent a ping message from
the other server to each VM every minute to check the status.
We decided to tag the VM as a failure when it refuses to ping
for one minute in a row. Figure 5 shows the deterministic finite
automata (DFA) representing the tagging scheme. In addition,
when multiple VMs became a failure state at the same time,
it was excluded from the VM failure tag, judging that there
was a problem with the server, not with the VM.

We collected data for two weeks, and since failures usually
do not occur easily on VMs, we overload them in three ways
to generate as many failures as possible.

• Resource overload – We overloaded CPU and memory for
each VM with Stress-ng [15], a resource overload tool.
We continuously increase CPU usage and memory usage.
The overload started at 50% and increased 5% every 5
minutes, and when a failure occurred, overload figures
have been reset.

• Traffic overload - Client VM sent traffic requests to the
server with Apache Bench [16], a server performance
checking tool. It continuously increases the number of
requests and increases the number of concurrent connec-
tions every 30 minutes. If a failure occurred, overload
figures have been reset.

• External attack – The attacker server generates a DDoS
attack to a randomly picked VM. It transmitted more than
100,000 packets at intervals below 6µs. Transmission
packet interval, attack time were randomly selected each
time of the attack.

As a result, we collected 44 failures within a month of the
experiment. Thirteen of them occurred simultaneously in the
VMs, and thus they were determined to be from a server
failure. Based on the log, we select the failures where the
former fault logs exist. Four of the 31 VM failures that did
not have an error log before the failure were determined. The
remaining 27 failures were considered to have early faults
associated with the failure and were distinguished by ARB
and LAG according to the criteria provided in [10].

In the case of ARB, similar fault logs were repeated con-
tinuously, and repeated logs were mainly regarding messages
indicating that processes or networks were unresponsive or
took too long. In the case of LAG, there was an error
message that did not normally occur, and in general, other
system daemons were restarted after the message occurred.
Furthermore, error logs mainly occurred from the kernel and
were related to hardware or system faults. The following are
examples of log messages from the ARBs and LAGs observed
before a failure.

©Copyright IEICE - APNOMS 2021 282

• ARB

– task delay info Worker processing SEQNUM is tak-
ing a long time

– Failed to retrieve unit state: Connection timed out

• LAG

– blk update request: I/O error, dev vda, sector op
READ flags phys seg prio class

– fail to add MMCONFIG information, can’t access
extended PCI configuration space under this bridge

ARBs occurred much more frequently, with 6 of the 27
failures being LAGs and 21 being ARBs. If the time difference
between the fault and the failure was too long, it was excluded
because the fault message did not enter the input window at the
time of training, and thus five failures with a time difference
of more than 30 min were excluded.

B. CNN Learning

The last generated data included 22 failures. However, in
experimental environments with an input window size of 5 min
and a gap of 5 min, more than 1,500 windows were created
per day (we did not create an input window when the log did
not exist). Because the data were excessively unbalanced, we
applied the oversampling by 2 times to the failure data and
the undersampling by 60 times to normal data. In addition,
we applied the class weight as the reciprocal number of each
class (normal/failure) in the data to the loss function.

We experimented to find the appropriate value for the pre-
failure size, pre-failure value, input window size, and gap. In
the case of the gap, we measured the VM live migration time
to catch the lower bound. According to [17], live migration
in OpenStack includes 9 steps, and the original VM services
until the 6th step, stop-and-copy, which is the step that VM
is paused. Therefore, we determined that the gap should be
longer than the time that it takes to get to the 6th step. We
tested how long it would take to perform five steps. As a result,
it took an average of 45 seconds before the stop-and-copy
phase, based on VMs with the size of 5GB on OpenStack. So
we decided that even if the gap is one minute, migration could
occur before the failure occurred in normal circumstances.

In NLP, words that are not in the dictionary are called out-
of-vocabulary (OOV). In general, for OOV, the model does not
apply word embeddings, and instead uses randomly generated
vectors or pre-defined OOV vectors. In the case of log data,
most of the OOVs were an application internal ID or process
ID such as ”UOixfW” and ”xdc” (word after pre-processing).
However, in the case of LAG errors, they generated logs that
had never been observed before, and thus included OOV in a
input window with a high probability. In fact, the error log of
one of the failures we observed in our experiment was ”sysrq:
Resetting”, and both words were OOV with our pre-learned
word embedding. It is more important to catch logs related
to faults than to delete unimportant IDs, and thus we tagged
OOV with a random vector of 100 dimensions.

TABLE I
PRE-FAILURE SIZE AND VALUE TEST

TABLE II
GAP AND WINDOW SIZE TEST

C. Results

We collected 35,370 data, and using an undersampling, we
applied only 589 data. We randomly separated the data into
training data and test data at a 8:2 ratio. In addition, 20%
of them were used as a validation set, and thus the model
was trained until the loss value for the validation set remained
unchanged.

First, we tested the appropriate values for the pre-failure
size and pre-failure value. At this time, the input window size
and gap were set to 5 min. First, we experimented without pre-
failure tagging as a control group. Without pre-failure tagging,
the CNN showed an accuracy of 0.95 and an F1-score of 0.25,
which was extremely low. We experimented by changing the
pre-failure size to 3, 5, and 10 min and the pre-failure value
to 0.5, 0.65, and 0.8. As a result, the accuracy was generally
similar and the F1-score varied, but was much higher than the
result of the test without pre-failure tagging. Table I shows
the results. The highest performance was an F1-score of 0.67
when the pre-failure tagging 0.65 for three minutes. In general,
the performance increased when the pre-failure size decreases.

We experimented by changing the gap to 1, 3, 5 and 10 min,
and the input window size to 5, 10, and 20 min. At this time,
we utilized a pre-failure size of 3 min, and a pre-failure value
of 0.65, which showed the best performance in the former
experiment. Table II shows the results. As the results indicate,
the highest performance was an F1-score of 0.67 when gap
was 5 min and the input window size was 5 min. When gap
was less than 10 min, the performance changed similarly,
which seems to be because each failure has a different time
difference from the fault messages. We predicted that a larger
input window size would result in a higher performance as

©Copyright IEICE - APNOMS 2021 283

Fig. 6. ROC curve with CNN, RNN, GRU

more information was entered; however, it was similar when
gap is under 10 min. This is because the time difference
between most fault messages and failures is less than 10 min.
However, when the gap is over 10 min, the performance is
very low.

Finally, for a performance evaluation of the CNN, we
compared the performance of a GRU and RNN. Each model
is simple, containing 256 cells and fully connected layer with
a Sigmoid function. All three models used data with input
window size 5, gap 5, pre-failure size 5, and pre-failure value
0.65. As a result, the GRU showed an accuracy of 0.53, a
recall of 0.95, and an F1-score of 0.41, and the RNN showed
an accuracy of 0.53, a recall of 0.68, and an F1-score of 0.33.
Fig. 6 illustrates the receiver operating characteristic (ROC)
curve for an accurate comparison of the three models. The
plot shows angular lines because the number of data points
is not large. The much higher area under the curve (AUC) of
the CNN compared to the AUCs of the RNN and GRU shows
that the CNN is much better learned.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a model that analyzes logs
extracted from VMs which execute VNFs and determine
whether failures will occur in the future. The proposed model
is built by adapting the sentence classification techniques.
To fit the log analysis of VMs, we made word embeddings
with log corpus, and we used the pre-failure tagging method.
We validate the proposed model with data generated in the
OpenStack testbed.

The limitation of this research is that we used stress tools
to generate failures instead of using real log data. So, now we
are continuously collecting real log data and planning to use
a large amount of data in the near future research.

In addition, in this study, data with large time differences
between the fault and failure were excluded from the learning.
To learn data with a large time difference, the window size
needs to be increased; however, the performance of the CNN
decreased and the learning time becomes much longer when
the window size exceeds 20 min. To learn this type of failure,
we are currently working on a new learning approach that
use CNN results in RNN-based models to understand the

sequence of log messages, and it is expected to show higher
performance.

ACKNOWLEDGMENT

This work was supported by Korea Evaluation Institute Of
Industrial Technology (KEIT) grant funded by the Korea Gov-
ernment(MOTIE) [(No.2009633) Development of AI network
traffic controlling system based on SDN for ultra-low latency
network service].

This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (2018-0-
00749, Development of Virtual Network Management Tech-
nology based on Artificial Intelligence).

REFERENCES

[1] G. Xiao, Z. Zheng, B. Yin, K. S. Trivedi, X. Du and K. Cai, ”Experience
Report: failure Triggers in Linux Operating System: from Evolution
Perspective,” 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), 2017, pp. 101-111.

[2] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J. Lou, C. Li, Y.
Wu and R. Yao, ”Predicting node failure in cloud service systems,” In
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 480–490.

[3] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai, ”Toward fine-
grained, unsupervised, scalable performance diagnosis for production
cloud computing systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, 2013.

[4] M. Grottke and K. S. Trivedi, ”A classification of software faults,”
Journal of Reliability Engineering Association of Japan, 2005, pp. 425-
438.

[5] Q. Fu, J. Lou, Y. Wang and J. Li, ”Execution Anomaly Detection in
Distributed Systems through Unstructured Log Analysis,” 2009 Ninth
IEEE International Conference on Data Mining, 2009, pp. 149-158.

[6] S. He, J. Zhu, P. He and M. R. Lyu, ”Experience Report: System
Log Analysis for Anomaly Detection,” 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), Ottawa, ON,
Canada, 2016, pp. 207-218.

[7] W. Ji, S. Duan, R. Chen, S. Wang and Q. Ling, ”A CNN-based
network failure prediction method with logs,” 2018 Chinese Control
And Decision Conference (CCDC), 2018, pp. 4087-4090.

[8] M. Du, F. Li, G. Zheng and V. Srikumar, ”Deeplog: Anomaly de-
tection and diagnosis from system logs through deep learning,” In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1285–1298.

[9] Y. Kim, ”Convolutional neural networks for sentence classification,” In
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1746–1751.

[10] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
”Fault triggers in open-source software: An experience report,” in
Software Reliability Engineering (ISSRE), 2013 IEEE 24th International
Symposium on. IEEE, 2013, pp. 178–187.

[11] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, ”Distributed
Representations of Words and Phrases and their Compositionality”, In
Advances on Neural information Processing Systems, 2013.

[12] Adiscon GmbH, ”The rocket-fast Syslog Server,” [Online]. Available:
https://www.rsyslog.com/ .

[13] Google, ”word2vec,” 2013. [Online]. Available:
https://code.google.com/archive/p/word2vec/ .

[14] Y. Zhang and B.C. Wallace, ”A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1509.01626 (2015).

[15] ”Stress-ng,” [Online]. Available: https://wiki.ubuntu.com/Kernel/Reference/stress-
ng .

[16] The Apache Software Foundation, ”Apache Bench,” [Online]. Available:
https://httpd.apache.org/docs/2.4/en/programs/ab.html .

[17] T.J. He, A.N. Toosi, and R. Buyya, ”Performance evaluation of live
virtual machine migration in SDN-enabled cloud data centers,” Journal
of Parallel and Distributed Computing 131 (2019): 55-68.

©Copyright IEICE - APNOMS 2021 284

