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Abstract Since a deadlock is a condition in 
which the excessive demand for the resources 
being used by others causes activities to stop, it is 
very important to detect and prevent deadlocks. 
This paper proposes a new and more efficient 
deadlock detection algorithm based on the 
transitive matrix of resource share places. For 
presenting the results, the suggested deadlock 
detection and avoidance algorithms were also 
adapted to an illustrated model. 
Key words: algorithm, conflict, deadlock, FMS, 
Petri-nets, resource share place, Transitive matrix 
 

1. Introduction 
The Flexible Management System (FMS) produces 
various items by resources such as machines, moving 
robots and parts. FMS consists of multi-procedures 
for performing tasks and the distribution of resources 
for smooth performance. However, since a deadlock 
is a status of arrested flow of a marking due to a 
delay in resources, the deadlock problem becomes 
one of the critical points in the scheduling problem 
of FMS. Therefore, it is necessary for an effective 
FMS control policy to ensure that deadlocks never 
occur [17]. Various deadlock analysis and avoidance 
methods to achieve confirmation and prevention of a 
deadlock status in a system have been proposed by 
researchers [1-3, 5, 6, 13-19]. Several methods 
among them have been adopted for deadlock 
resolution, based on a graph model, a finite state 
machines model and Petri Nets models [17]. In a 
Petri net analysis model, siphon analysis and 
reachability graph analysis have been used. 
Specifically, the siphon analysis method can be 
implemented by adding a control place with an initial 
marking and related arcs to the initial model. This 
requires some effect to find and analyze the 
characters of the siphon in its initial mode. In 
addition, the reachability graph method could obtain 
bigger models if the initial model is big enough. The 
object of this paper is to propose an easy but 
effective method to establish a deadlock detection 
policy. The deadlock problem in PN may occur at 
the resource share place in PN. This means that a 
resource share place holds through an alternative 
transition and at the same time requests a hold 
transition at the same place [15]. The properties of 
PN can be classified into behavioral and structural 

properties. The behavioral properties are investigated 
in association with the marking of PN, e.g., 
reachability, boundness and liveness [9]. Both 
transition and place invariant belong to structural 
properties in PN. Since transitive matrix could 
explain all relations between the place and transitions 
in Petri nets, we have reported an [8,9] to analyze 
scheduling in FMS using the transitive matrix after 
slicing resource share environment. In this paper, we 
propose an efficient deadlock detection policy based 
on the transitive matrix after showed a relationship 
between the resource share places. 
 

2. Preliminaries of Petri nets 
2.1 Petri Nets  
In this section, some definitions of PN which are 
often used in the latter part of this paper are as 
follows [4,5,11,12,17-19]. 
  
A Petri net is a 5-tuple PN=<P,T,I,O,M,> where P 
={p1,p2,..,pm} is a finite set of places, T={t1,t2,…,tn} 
is a finite set of transitions, and P ∪T = 
∅, , =TP φ∩  I:P x T -> N is an input function, 
O:T x P -> N is an output function where N is the set 
of positive integers. M:P-> N, is a marking 
representing the number of tokens in places with Mo 
denoting the initial marking. 
A transition t ∈T is enabled under M, in symbols 
M[t>, iff ∀p ∈ •t:M(p) > 0 holds. If M[t> holds the 
transition t may fire, resulting in a new marking M’, 
denoted by M[t> M’, with M’(p) = M(p) -1, if p 
∈•t\t•; M’(p)=M(p) +1 if p∈ t•\•t; and otherwise 
M(p)=M’(p), for ∀ p∈P. 
The set of reachable marking from a marking Mo is 
denoted as R(PN,Mo). 
Let (PN,Mo) be a Petri net with PN=<P,T,I,O,M>. A 
transition t ∈T is live under Mo iff ∀M∈ R(PN,Mo), 
∃M’∈R(PN,M),M’[t> holds. PN is dead under Mo 
iff ∄t ∈T, Mo[t> holds. (PN,Mo) is deadlock-free iff 
∀M ∈R(PN,Mo),∃t∈T,M[t>holds. (PN,Mo) is 
quasi-live iff ∀t ∈T, ∃M ∈R(PN,Mo), M[t> holds. 
(PN,Mo) is live iff ∀t ∈T, t is live under Mo. 
(PN,Mo) is bounded iff ∃k ∈N,∀M 
∈R(PN,Mo),∀p∈P,M(p) ≤k holds. 
The matrix of a PN structure, C is C=<P,T,B-,B+>, 
where P ={p1,p2,..,pm} is a finite set of places, 
T={t1,t2,…,tn} is a finite set of transitions, and P ∪T 
= ∅, , =TP φ∩ . B- and B+ are matrices of m rows 
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by n columns defined by 
 B- =[I,j] = #(Pi,I(tj)), matrix of input function, 
 B+ =[I,j] = #(Pi,O(tj)), matrix of output function. 
Also, B = B+ - B- is called an incidence matrix. 

 
2.2 Transitive matrix 
We recall now some basic definitions of transitive 
matrix which are as used in [7-9].  
A column-vector xT=(x1,x2,…,xn) ≥ 0 of the 
homogeneous equation A xT=ΔM =0 is called a T-
invariant, where xT is x’s transpose. An integer 
solution y = (y1,y2,…,ym)T of the transposed 
homogeneous equation Ay = 0 is called a S-invariant. 
The place and the transition transitive matrix are as 
follows, respectively: 

B = B-(B+)T : place transitive matrix 
Let BPL  be the labeled place transitive matrix:  

T
nP BtttdiagBL ))(,...,,( 21B

+−= , 

where ),...,2,1( niti = is : 

                    
   t i  firenot  0 

        t i   iref  1
  t i
⎩
⎨
⎧

=  

The elements of BPL  describe the directly 
transferring relation that is from one place to another 
place through one or more transitions.  
Let *LBP  be the labeled place transitive matrix 

(MILN). If a transition kt  appears s times in the 

same column of BPL , then we replace kt  in *LBP  

by stk / .  
A row (column) vector in transitive matrix indexed 
by P and row (column) vector means that place pi 
received (give) a token from (to) the column (row) 
places. If column (row) place has o value then this 
place will not give any token to row (column) place 
pi.   
A firing possibility of each transition to a row in the 
transitive matrix is represented and a token exists in 
the resource common place of a row direction.  
Also, a token exists in the resource common place of 

a row direction.  So, if ∑ i
k

s
t

i )(  is greater than 1, 

it is possible to firing, but if smaller than 1, this PN 
not able to fire. 
From the basic definition, we propose a property of 
a deadlock detection condition based on the column 
and row vector’s relationship in resource share 
places.  
 
Property: Let Rc(pi) be a total token number of 
place pi in column and Rr(pi) be a total token 
number of place pi in row.  

   Rc(pi) = ∑
=

n

i 1
i )(p = ∑

=

•
n

i 1
i )p(f ,  

   Rr(pi) = ∑
=

n

i 1
i )(p = ∑

=

•
n

i 1
i )p(f ,  

Where, n is number of place, 
 f is a calculate function in *

BPL  
if ∃ t then f = 1 else f = 0. 

Then, Dr(pi) = Rr(pi) – Rc(pi) be a deadlock 
condition of place Pi. 

If, ∑
=

=
n

j
k

1
j )Dr(p , where j is the number of 

resource share places, 
If k ≥ 0 and k is an integer value then this PN is 
deadlock-free, else this PN is deadlock. 
 
Proof: Transitive matrix explains all relations 
between the places and transitions by OPN 
(Ordinary Petri net) in definition. This means 
that all places have only one input arc and one 
output arc. So, total of the token in each place 
should be integer value. If total of token value 
is less than zero then this place able to reach 
deadlock. Also, if total value of token is not 
integer value then this place could not able to 
fire. 
 

3. Deadlock detect algorithm in Petri net using the 
transitive matrix 

3.1 Deadlock  
A deadlock problem occurs by the conflict place in 
the net. In this section, we consider an example of 
detecting a deadlock status based on the proposed 
policy.  
(Example) 
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Figure 3.1 Example Petri nets 

 
Table 3.1 Transitive matrix of figure 3.1 
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In this example, resource share places are M1 and 
M2. A deadlock detection condition of this model is:  
 
1) Case of M1:   
Rr(M1) : 1 + 1/2 + 1/2 = 2,   
Rc(M1) : 1/2+1/2=1  
Dr(M1) = 2-1 = 1 
 
2)Case of M2:   
Rr(M2) : 1+1=2,         
Rc(M2) : 1/2+1/2 +1/2=1(1/2) 
Dr(M2) = 2 – 1(1/2) = 1/2 

∑
=

2

1
i )Dr(p

i

 = Dr(M1) +Dr(M2) = 1+1/2 = 1(1/2)  

This means that places M1 and p2 need tokens for 
enable transitions t2, i.e. deadlock. 
 
3.2 Deadlock free 
Now, in this section, we consider deadlock 
conditions in two examples of deadlock free (figure 
3.2).  
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t1
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t3

t4  
Figure 3.2 Example of deadlock free 

 
Table 3.2 PRM  of Figure 3.2 

In this model, we can summarize the deadlock 
conditions as follows: 
Resource share place p3: 
Rr(p3) = 1+1=2,           
Rc(p3) = 1+ 1=2 
Dr(p3) = 2- 2 = 0 
So, deadlock-free. 
 
3.3 Deadlock detect algorithm 
We propose a deadlock detect algorithm based on 
the previous section. 

Algorithm: deadlock fine 

Input:  N = <P,T,F,M> 
Output: N is deadlock free or not 

(1) Define 
*
BPL  of a Petri net initial N. 

(2) Find all relation of resource share places in 

each column . 
*
BPL   

(3) Find all relation of resource share places in 

each row
*
BPL .  

(4) Calculate Dr(pi) : deadlock condition using 

the 
*
BPL  

(5) Repeat (2)-(4) for all resource share places. 

(6) If ∑
=

n

i 1
i )Dr(p = 0 then this net is deadlock 

free, but if not then find Dr have negative places 
or not, if have negative place then this net N is 
deadlock. 

 
4. Application example 

An FMS example introduced in [20] is represented 
in Fig. 4.1. There are 2 machines (M1 and M2), one 
robot and two transport devices, also two operations 
Job 1 and Job 2. We define the incorporate 
alternative process plans as follows: 
 Job 1: {M1, M2} 
 Job 2: {M2, M1} 
The PN representation of system is as follows: 
 

 
Figure 4.1 Example of model 

 

Table 4.1 
*
BPL  of figure 4.1 
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The resource share places in this model are M1 and 
M2.  
 
1) Case M1: 
Rr(M1) = 1+1=2,    
Rc(M1) = 1/2+1/2+1/2=1(1/2) 
Dr(M1) = 2 - 1(1/2) = 1/2 
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2)Case M2: 
Rr(M2) = 1+1= 2 
Rc(M2) = 1/2+1/2=1 
Dr(M2) 2-1= 1 

Therefore, ∑
=

2

1
i )Dr(p

i
= 1/2+ 1 = 1(1/2) 

K is not integer value, and, this PN is deadlock. 
 

5. Conclusion 
In this paper, we proposed an analysis of the 
deadlock problem in Petri nets using the transitive 
matrix based on the resource share places. The 
deadlock problem occurs by the relationship 
between more than two transitions based on the 
resource share place. We defined a place which has 
the number of input tokens smaller than the number 
of output tokens as a dead node, we showed some 
deadlock conditions based on this relationship 
between the input and output tokens in the resource 
share place. In addition, we showed some examples 
to find a deadlock and a deadlock free status using 
the transitive matrix directly. The result showed that 
this method could be simpler than others. In the near 
future, studies to find a deadlock problem in the 
General Petri nets using the transitive matrix and 
also to avoid the deadlock avoidance problem on the 
cyclic scheduling of FMS will be reported. By way 
of rider, we will study a benchmark with other 
deadlock detection algorithms. 
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