
A Study on Synthesizing State Machines from Multiple Communication Diagrams

Toshiki Kinoshita1 and Toshiyuki Miyamoto2

1,2Graduate School of Engineering, Osaka University
2-1 Yamada-oka, Suita, Osaka 565-0871 Japan

E-mail : 1kinoshita@is.eei.eng.osaka-u.ac.jp, 2miyamoto@eei.eng.osaka-u.ac.jp

Abstract: For a service-oriented architecture based system,
the problem of synthesizing a concrete model for each service
configuring the system from an abstract specification, which
is referred to as choreography, is known as the choreography
realization problem. In this paper, we assume that choreogra-
phy is given by two acyclic relations. We study the conditions
for acyclic relations to synthesize concrete models.

1. Introduction
The internationalization of business activities and informa-
tion and communication technology have intensified compe-
tition among companies. Companies under the pressure have
to respond to the change of business needs, and the time
frame for making changes to existing business and launch-
ing new businesses should be shortened. Therefore, the need
to quickly change or build information systems has been in-
creasing. Under such circumstances, service-oriented archi-
tecture(SOA)[1] has been attracting attention as the architec-
ture of information systems. In SOA, an information system
is built by composing independent software units called peers.

In this paper, we consider the problem of synthesizing a
concrete model from an abstract specification. The concrete
model describes the behavior of peers and the abstract speci-
fication describes how peers interact with each other. It is not
easy for designers to design a concrete model directly from
requirements because huge gaps exist between requirements
and concrete models. In contrast, defining an abstract spec-
ification is relatively simple, and we can verify its accuracy
easily. Therefore, if we can automatically synthesize a con-
crete model from an accurate abstract specification, the de-
signer’s workload would decrease significantly and product
quality would improve.

In SOA, the problem of synthesizing a concrete model
from an abstract specification is known as the choreogra-
phy realization problem (CRP)[2]. The abstract specification,
called choreography, is defined as a set of interactions among
peers, which are given by a dependency relation among mes-
sages; the concrete model is called service implementation,
which defines the behavior of the peer. This paper uses the
communication diagram and the state machine of Unified
Modelling Language (UML) 2.x[3] to describe the choreog-
raphy and service implementation, respectively.

Miyamoto et al. proposed a method for synthesizing hier-
archical state machines from the choreography given in com-
munication diagrams called the Construct State machine Cut-
ting Bridges (CSCB) method[2]. In [4], a new notion called
re-constructible decomposition of acyclic relations was in-
troduced; a necessary and sufficient condition for a decom-
posed relation to be re-constructible was shown. It has al-

ready shown that the condition for the behavioral model is
given by lower and upper bounds of the acyclic relation. The
CSCB method assumes that choreography is defined by only
one communication diagram. However, this is restrictive be-
cause a system must work well in a variety of cases. In this
paper, we study the CRP when the choreography is defined
by two communication diagrams.

The remainder of this paper is organized as follows. In
Sect.2, a notion called re-constructible decomposition of
acyclic relations and a subset of UML called subset of UML
for formally describing choreography and behavioral fea-
ture(cbUML) are introduced. In Sect.3, we introduced CSCB
method and Sect.4 shows the main result of this paper.

2. Preliminaries
2.1 Re-constructible Decomposition

Let Σ be a finite set and R be a relation on Σ. The transi-
tive closure and reduction of R is denoted by R+ and R−,
respectively. A relation R is called cyclic if e1 and e2 ∈ Σ
exist such that (e1, e2) ∈ R and (e2, e1) ∈ R+; otherwise it
is called acyclic. Hereinafter, we assume that every relation
is acyclic.

The set of all topological sorts of an acyclic directed
graph(Σ,R) is denoted by L(R). A topological sort is called
a word and their set is called a language.

Let C be a set, {Σc} be a partition of Σ wrt c ∈ C. Let Rc

be a relation on Σc and their set be {Rc} = {Rc ⊆ Σ2
c |Σc ∈

{Σc}}. A relation Rcom ⊆ R\(
∪

c Σ
2
c) is called a communal

relation of R.

Definition 1 (Re-constructible Decomposition) Given a set
{Rc} and a communal relation Rcom, the relations {Rc} are
re-constructible to R if L(Rcom ∪

∪
c Rc) = L(R).

Relations Rmin
c ,Rmax

c ,Rmin, and Rmax are defined as
follows: Rmin

c = Σ2
c ∩ R−,Rmax

c = Σ2
c ∩ R+,Rmin =

Rcom ∪ (
∪

c Rmin
c), and Rmax = Rcom ∪ (

∪
c Rmax

c), where
Rmin

c ,Rmax
c ,Rmin, and Rmax are acyclic because they are

sub-relations of R.
Under Assumption 1, Theorem 1 holds [4].

Assumption 1 L(R) = L(Rmin).

Theorem 1 {Rc} is re-constructible iff ∀c : Rmin
c ⊆ Rc ⊆

Rmax
c .

2.2 cbUML

Let us introduce a subset of UML called cbUML. The com-
plete set of cbUML is described in [5]. This section shows a

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

269

simplified version of cbUML, which is sufficient for the dis-
cussion of this paper.

Definition 2 (cbUML) A cbUML model is a tuple
(C,M,A,
CD,SM), where C is the set of classes, M is the set
of messages, A is the set of attributes, CD is the set of
communication diagrams, SM is the set of state machines.

One class exists for each peer, and a state machine defines
its behavior. A communication diagram describes a scenario,
which is an interaction of peers.

2.2.1 Messages

The set of messages is partitioned by the type of messages:
M = Msop ∪Maop ∪Mrep, where Msop is the set of syn-
chronous messages generated by synchronous calls, Maop is
the set of asynchronous messages generated by asynchronous
calls, and Mrep is the set of reply messages to synchronous
messages. Let Ms = Msop and Ma = Maop ∪ Mrep.
Correspondings between the synchronous call and its reply
is given by the function ref : M → M ∪ {nil}, such
that ∀m ∈ Msop : ref(m) ∈ Mrep, ∀m ∈ Mrep :
ref(m) ∈ Msop,∀m ∈ Maop : ref(m) = nil and
∀m ∈ Msop ∪Mrep : ref(ref(m)) = m.

The peers behave differently during interactions depend-
ing on the type of message, as follows. In the case of a syn-
chronous call, the caller’s execution is suspended until the
caller receives a reply from the callee. However, in the case
of an asynchronous call, the caller can continue to operate,
regardless of behavior of the callee.

In UML, each message has two events: a send event and
a receive event. For a synchronous message, the receive
eevent occurs immediately after the send event. However,
for a discussion that occurs subsequently, we need two events
that occur sequentially. Therefore, we define that each syn-
chronous message has two events: a preparation event for
message sending and a send-receive event where the prepa-
ration event is a caller’s event and the send-receive event is
a callee’s event. The preparation event and the send-receive
event of a synchronous message m ∈ Ms are denoted by $m
and !m, respectively. For an asynchronous or a reply mes-
sage m ∈ Ma, the send and receive events are denoted by !m
and ?m, respectively. Hereafter, an active event is the send-
receive event of a synchronous message or the send event of
an asynchronous or a reply message. The set Σ of message
events and set ∆ of active events are defined as follows:

Σ = {$m, !m |m ∈ Ms} ∪ {!m, ?m | m ∈ Ma} (1)
∆ = {!m | m ∈ M} (2)

The acyclic relation ⇒M on the order of the caller’s and
callee’s events for each message is defined as follows:

⇒M= {($m, !m) | m ∈ Ms} ∪ {(!m, ?m) | m ∈ Ma}
(3)

2.2.2 Communication Diagram

Definition 3 (Communication Diagram) A communication
diagram cd ∈ CD is a tuple cd = (Ccd,Mcd, Conncd, linecd,
Dcd), where Ccd ⊆ C is the set of classes, which are called
lifelines and correspond to peers; Mcd ⊆ M is the set
of messages; Conncd ⊆ Ccd × Ccd is the set of connec-
tors, which is given as a symmetric relation on Ccd; linecd :
Mcd → Conncd assigns a connector for each message; and
Dcd ⊆ ∆ ×∆ indicates a dependency relation among active
events, where Dcd must be acyclic.

A conversation is a sequence of messages exchanged
among peer[4]. The set of conversations defined by a com-
munication diagram cd is denoted by C(cd) ⊆ M∗, where
M∗ is the set of all sequences of distinct messages.

Definition 4 A conversation σ = m1m2 . . .mn is in C(cd)
if and only if σ ∈ M∗ and the corresponding sequence
γ =!m1!m2 . . .!mn of active events satisfy ∀i, j ∈ [1..n] :
(!mi, !mj) ∈ Dcd ⇒ i < j.

If there exists a communication diagram cd ∈ CD such that
σ ∈ C(cd), then σ ∈ C(CD).

2.2.3 State Machine

Definition 5 A state machine is a tuple sm = (V,R, rt,Θ,
Φ, E,C,B), where V is the set of vertices, R is the set of
regions, rt ∈ R is the top region, Θ is an ownership relation
between vertices and regions, Φ is the set of transitions, E is
the set of events, C is the set of constraints, and B is the set
of behaviors.

In UML state machines, although there are various kinds
of states and pseudo-states, only simple states, composite
states, final states, and initial pseudo-states are used in this
paper. Therefore, the set V of vertices is partitioned into the
following types of subsets: V = SS ∪CS ∪FS ∪ IS, where
SS is the set of simple states, CS is the set of composite
states, FS is the set of final states, and IS is the set of initital
pseudo-states.

Let Pro be a mapping that translates a word of acyclic
relation R on Σ to a conversation. A conversation σ ∈
Pro(L(R)) is obtained by removing non-active events and
replacing each active event with corresponding message from
a word w ∈ L(R). A word w is accepted by the set SM of
state machines if every state machine is in the final state in the
top region after occurring all events in w. Let R be an acyclic
relation, and let the language of R and the language accepted
by SM be equivalent. Then, the set of all conversations for
SM, denoted by C(SM), satisfies the following equation:

C(SM) = Pro(L(R)).

3. Choreography Realization Problem

Problem 1 (CRP) For a given set CD of communication di-
agrams, is it possible to synthesize the set SM of state ma-
chines that satisfy C(CD) = C(SM)? If possible, obtain the
set of state machines.

270

In the case of un-realizable choreography, it is preferred that
state machines that mimic the choreography as closely as pos-
sible are synthesized. A set of state machine that satisfy
C(CD) ⊇ C(SM) is called a weak realization of the given
choreography. Since a set of empty state machine, in which
C(SM) = ∅, is a weak realization for any choreography, the
set of state machines whose C(SM) is maximal is expected.

Definition 6 If a weak relization SM that satisfies
C(SM∗) ⊆ C(SM) and SM∗ ̸= SM does not exist,
SM∗ is called a maximal weak realization.

Definition 7 SM is a fair realization of CD if ∀cd ∈ CD :
C(cd) ∩ C(SM) ̸= ∅.

3.1 CSCB Method

Miyamoto et al. proposed the CSCB method that synthesizes
state machines from a communication diagram in [2]. Due
to space limitations, the details of the algorithm are omitted
here. State machines are synthesized as follows:

(1) Construct an acyclic relation ⇒ on the set of events.
For each peer c, perform the following steps.

(2) Derive an acyclic relation ⇒c from ⇒.
(3) Construct a state machine from ⇒c.

Recall that we assume Assumption 1 for ⇒c.
Because the acyclic relation D is a relation on active

events, we have to extend it to the relation on active and non-
active events. The acyclic relation ⇒⊆ Σ2 on the set of events
is obtained by augmenting D, as follows:

⇒ = D ∪ {(?m1, !m2) | m1 ∈ Ma,m2 ∈ Ma,Ω(?m1, !m2)}
∪ {(?m1, $m2) | m1 ∈ Ma,m2 ∈ Ms,Ω(?m1, $m2)}
∪ {(!m1, $m2) | m1 ∈ Ms,m2 ∈ Ms,Ω(!m1, $m2)}
∪ ⇒M ∪{(!m, e) | m ∈ Ms,Ω($m, e)}, (4)

where Ω(e1, e2) is true when both events e1 and e2 occur in
the same peer and (!e1, !e2) ∈ D, where !e1 and !e2 are the
corresponding active events for events e1 and e2, respectively.

The communal relation for decomposition is given as fol-
lows:

⇒com=⇒M ∪{(!m, e) |m ∈ Ms,Ω($m, e)}, (5)

where {(!m, e) |m ∈ Ms,Ω($m, e)} implies that an event e
that follows a preparation event $m of a synchronous message
and occurs in the same peer follows the send-receive event !m
of the message. As stated before, a caller of a synchronous
message waits for the occurrence of callee’s receive event.
Therefore, !m precedes e. In the case of state machines of
cbUML, any event following a preparation event follows the
send-receive event. Therefore, the order given by ⇒com is
kept when multiple state machines are executed in parallel.

The relation Yc for a peer c is given as follows:

Yc =⇒max
c ∪ {(?ref(m), e) |

m ∈ Ms, e ̸=?ref(m), ($m, e) ∈⇒max
c } (6)

The first set is the projected relation of the transitive closure
of ⇒ on the set of events of peer c. The second set adds the
additional constraints so that only the receive event ?ref(m)
of the reply message of a synchronous m is the direct succes-
sor of the preperation event $m. Next, the acyclic relation ⇒c

for a peer c is obtained by transitively reducing Yc, as follows:

⇒c = Y −
c (7)

However, Theorem 1 shows that transitive reduction of ⇒
is sufficient to derive ⇒c. Thus, a ⇒c is calculated as follows:

Y
′

c = ⇒min
c ∪{(ref(m), e) |

m ∈ Ms, e ̸=?ref(m), ($m, e) ∈⇒min
c } (8)

⇒c =Y
′−
c (9)

Definition 8 Given a set {Rc} of relations, SM which is
synthesized from {Rc} is denoted as SM{Rc}.

Theorem 2 [4] If {Rc} is re-constructible to ⇒, then
SM{Rc} is a strong realization of cd.

4. Synthesizing State Machines from Two
Acyclic Relations

In this paper, we assume that choreography is composed of
two communication diagrams: cd1 and cd2. We also as-
sume that we use same message set for all communication
diagrams. Therefore, let cd1 and cd2 ∈ CD be

cd1 = (Ccd1,Mcd1, Conncd1, linecd1, Dcd1) and

cd2 = (Ccd2,Mcd2, Conncd2, linecd2, Dcd2),

respectively, then Ccd1 = Ccd2,Mcd1 = Mcd2, Conncd1 =
Conncd2, linecd1 = linecd2, and Dcd1 ̸= Dcd2. We also as-
sume that Dcd1 and Dcd2 are acyclic.

For each communication diagram and peer c, we obtain
⇒c from Eq. (7) and let us denote them by ⇒cd1

c and ⇒cd2
c ,

respectively. We also obtain ⇒c from Eq. (9) and let us de-
note them by ⇒cd1

c and ⇒cd2
c , respectively. From Theorem 1

and Theorem 2, SM{⇒c} that satisfies

∀c : ⇒cd1
c ⊆⇒c⊆ ⇒cd1

c (10)

is a strong realization of cd1; SM{⇒c} that satisfies

∀c : ⇒cd2
c ⊆⇒c⊆ ⇒cd2

c (11)

is a strong realization of cd2.
We put the following assumption on relation ⇒com,⇒cd1

c

and ⇒cd2
c .

Assumption 2 ⇒com ∪
{∪

c(⇒cd1
c ∪⇒cd2

c)
}

is acyclic.

Lemma 1 Under Assumption 2, SM{⇒c}is a strong realiza-
tion of CD iff there exists {⇒c} that satisfies following con-
dition.

∀c ∈ C : (⇒cd1
c ∪⇒cd2

c) ⊆⇒c⊆ (⇒cd1
c ∩⇒cd2

c) (12)

271

Figure 1. A choreography with five peers

!m6

!m7!m1 !m2 !m8

!m5!m3

!m4

Figure 2. Dcd1

!m6

!m1 !m2

!m7 !m8

!m3 !m5

!m4

Figure 3. Dcd2

If C(cd1) ⊆ C(cd2), a strong realization of cd2 is a strong
realization of CD. However, this situation is useless, so that
we put the following assumption.

Assumption 3 C(cd1) ⊈ C(cd2) and C(cd1) ⊉ C(cd2).

Lemma 2 Under Assumption 2 and Assumption 3, cd1 and
cd2 that satisfy following condition do not exist.

∀c ∈ C : (⇒cd1
c ∪⇒cd2

c) ⊆ (⇒cd1
c ∩⇒cd2

c) (13)

Theorem 3 Under Assumption 2 and Assumption 3, {⇒c}
that synthesizes a strong realization SM{⇒c} of the CD does
not exist.

Then, we consider the way to realize weakly and fairly. We
can obtain the following lemma and theorem.

Lemma 3 C(cd1)∩C(cd2) ̸= ∅ iff Assumption 2 is satisfied.

Theorem 4 Under Assumption 2, a strong realization of cd1
or cd2 is a fair weak realization of CD.

Trivially, Theorem 3 holds when choreography is given
by more than two communication diagrams. Lemma 3 holds
for more than two communication diagrams cases under As-
sumption 2, so that Theorem 4 also holds.

Example

Figure 1 Shows choreography for a system composed of five
peers. Figure 2 and Figure 3 show the dependency relations
on messages in cd1 and cd2, respectively. For simplicity, we
assume that all messages are asynchronous. These communi-
cation diagrams satisfy all assumptions. Figure 4 and Figure
5 are acyclic relations on peer S3, and show dissatisfaction of
Eq. (12).

We can synthesize SM which satisfies C(SM) =
C(cd1) by using the algorithm in [2]. Then, SM
is a fair weak realization, since C(SM) ∩ C(cd2) =
{m1m2m3m5m4m6m7m8}.

Figure 4. ⇒cd1
S3 ∩⇒cd2

S3

Figure 5. ⇒cd1
S3 ∪⇒cd2

S3

5. Conclusion
In this paper, choreography was given by two communication
diagrams. The result can be applied for more than two cases.
We tried to extend the CSCB method by using lower and up-
per bounds of acyclic relation. However, we showed that we
cannot obtain any strong realization in this way. Consider-
ing new method to achieve strong realization will be a future
work.

Acknowledgement This work was supported by KAK-
ENHI (26330083).

References

[1] T.Erl, Service-Oriented Architecture: Concepts, Technol-
ogy, and Design, Prentice Hall Professional Technical Ref-
erence, 2005.

[2] T. Miyamoto, Y. Hasegawa, and H. Oimura, “An Ap-
proach for Synthesizing Intelligible State Machine Models
from Choreography Using Petri Nets,” IEICE Transaction
on Information and Systems, vol.E97.D, no.5, pp.1171-
1180, May 2014.

[3] Object Management Group, “OMG Unified Model-
ing Language(OMG UML), superstructure,” ver.2.4.1,
http://www.uml.org, Aug.2011.(accessed Oct. 31, 2013).

[4] T. Miyamoto, “Choreography Realization by Re-
constructible Decompositionof Acyclic Relations,” IE-
ICE Transactions on Information and Systems, vol.E99.D,
no.5, pp.1420-1427, 2016.

[5] Y. Hasegawa, H. Niimura, and T. Miyamoto, “A UML
subset for design and vertification of systems based on
SOA,” IEICE Technical Report, vol.111, no.293, pp.89-94,
Nov. 2011. (in Japanese).

272

