
P4MT: Designing and Evaluating Multi-Tenant
Services for P4 Switches

Buck Chung, Chien Chen, Chien-Chao Tseng
Department of Computer Science

National Yang Ming Chiao Tung University
Hsinchu, Taiwan

buck5060.cs06g@g2.nctu.edu.tw,
chienchen, cctseng@cs.nctu.edu.tw

Jim Hao Chen, Joe Mambretti
International Center for Advanced Internet Research

Northwestern University
Chicago, Illinois 60611

Jim-Chen, j-mambretti@northwestern.edu

Abstract—The goal of P4MT is to leverage the role-based
control mechanism in P4Runtime Specification to further enable
multi-tenancy on a single P4 switch. The evaluation results
show that P4MT consumes only a small percentage of ASIC
space and causes a negligible increment in data plane/control
plane latency. International P4 Experimental Networks (i-P4EN)
has been created to realize the potential of P4 experimental
networks. To perform multiple experiments for research groups,
multitenancy is required to increase the efficiency of the testbed.
By modifying the P4Runtime design and P4 pipeline, we designed
and implemented multi-tenancy on a P4 switch. With P4MT, each
tenant can select its own P4 pipeline and control the packet
processing without intervening with the packet processing of
other tenants. Future work includes supporting P4 Externs for
programmable data plane networking, multi-tenant networking
and automatic pipeline migration on P4MT.

Index Terms—P4, Software Defined Networking, multi-tenant
networking, programmable networking

I. INTRODUCTION

Software Defined Networking (SDN) and the OpenFlow
protocol [1] enable programmability on computer networks.
P4 [2] brings future flexibility to packet processing, making
it easier to support non-standard protocols. Researchers are
innovating and leveraging P4 to solve network problems, but
these prospective solutions need to be verified in a testbed
before being deployed into production to ensure optimal
performance and avoid potential problems.

Several P4 research institutions around the world formed
a partnership to design and implement the international P4
Experimental Networks (i-P4EN) (Figure 1). The partici-
pating institutions can share distributed P4 resources over
international research and education networks, as well as
initiate international P4 research collaboration projects. The
initial network scenarios employed in this research testbed
are Software-Defined Network Exchanges (SDXs), Network
and Cloud Testbed Networks, Science Networks, and Campus
Research Networks.

These four initial network scenarios require multi-tenant
support. In order to run multiple projects in P4 Experimental
Networks, multiple P4 programs will need to be deployed in a
P4 switch if the number of projects exceeds the number of P4
switches on one site. The P4Runtime Specification defines a
multiple role design which slices the control plane for different

Fig. 1. International P4 Experiment Networks (i-P4EN)
roles and enables control plane redundancy [3]. However, the
current P4Runtime implementation does not enable control
and data plane partition to support multi-tenant services on
a switch. P4MT modifies the current design of the control
plane and packet processing pipeline to support a provider and
multiple tenant model, where each tenant operates a logically
dedicated P4 switch and decides packet process procedures
with a tenant controller. (Figure 2) The testbed network can
thus support the four international P4 Experimental Networks
(i-P4EN) scenarios and multiple tenant specified applications.

P4 Switch

...
Project A
Controller

Project N
Controller

...

Pipeline A

Pipeline N

Traffic A

Traffic N

Fig. 2. The concept of multiple tenant P4 switch

II. BACKGROUND & RELATED WORKS

A. P4

P4 [2] is a domain-specific language for describing packet
processing procedures and header formats in the switch. By
writing the P4 code and installing the code into a P4-enabled
switch, new network protocols can be supported without
designing a new application-specific integrated circuit (ASIC).
Additionally, P4 can map lookup tables based on the purpose
of the switch onto the switch’s TCAM or SRAM resources,

1

©Copyright IEICE - APNOMS 2021 267



which improves the space efficiency of the ASIC. There are
three characteristics of P4:
• Protocol independence: developers can describe new or self-

defined network protocols
• Target independence: P4 can run on both software switches

(BMv2) or hardware switches (FPGA or ASIC)
• Field reconfigurability: packet processing procedures can be

changed after deployment.

B. P4Runtime

P4Runtime [3] is the P4 control plane protocol that handles
data plane management and pipeline reconfiguration. In order
not to change the control message format when modifying
the P4 pipeline, P4Runtime separates pipeline information
(P4Info) from the control message format. P4Runtime also
includes a design that separates the control plane into multiple
non-overlapping roles in the switch CPU; Role Config, as pre-
sented in Figure 3, stores the separation policy. For each role,
a primary-standby controller design is applied for redundancy.

Tables for BTables for BTables for ATables for A

Role B

StandbyStandby

Role A

StandbyStandby

Tables for A Tables for B

Primary Primary StandbyStandby
Controllers

Role Config (in P4Runtime Server)

Tofino
Pipeline

CPU
P4
Switch

Fig. 3. Role-based P4Runtime Design

C. Related Works

FlowVisor FlowVisor [4] separates the traffic for controllers
in an OpenFlow switch with Slice Policy, which defines
the type of traffic. FlowVisor acts as an OpenFlow proxy,
translating the flow entries from the controller and dispatch-
ing notifications from the switch according to Slice Policy.
FlowVisor isolates the traffic for a slice by adding extra
match keys on flow entries. Since FlowVisor acts as a proxy,
it will cause a single point of failure if the proxy crashes.
Furthermore, because FlowVisor isolates traffic with the value
of header so slices can not manage the same IP or MAC
address from different groups of hosts.

OpenVirtex To virtualize the SDN network, OpenVirtex
[5] also translates OpenFlow messages in the control plane.
Tenants can send the network topology and other requests
to OpenVirtex, after which OpenVirtex will create a virtual
network for the tenant. Compared to FlowVisor, isolation in
OpenVirtex is done through address translation in the network.
The MAC and IP address of the tenant are translated when
entering the OpenVirtex network, and the address is recovered
when leaving the OpenVirtex network. As a result, tenants can
use the overlapped addresses in their traffic.

HyPer4 HyPer4 [6] designs and implements a P4 program
emulator with a P4 program. Multiple P4 programs and
dynamic pipeline loading are supported in the HyPer4 pipeline.
The two most important parts of the HyPer4 pipeline are
parser emulation and match-action table emulation. For parser
emulation, the parsing length is decided by the HyPer4 parsing

table. The packet is then sent back to the beginning of the
pipeline with the Resubmit function in P4, and the native
parser extracts the packet header. This process is repeated until
there is no header left in the packet. Since Resubmit makes
packets go through the pipeline more than one time, the packet
processing throughput diminishes.

To emulate an arbitrary match action table, multiple match-
action stages with multiple action primitives are pre-configured
in a match action stage with all possible types of match and
actions in HyPer4 design. About 230 tables in ASIC are
used to emulate five stages and four primitives tables. [6].
Additionally, in order to match any header structure, HyPer4
concatenates headers into a single, long variable and matches
the desired header key with a wide TCAM table in the match-
action stage.

III. MULTI-TENANT P4 SWITCH

A. Design Overview

Data/Control Plane Isolation To allow multiple tenants
to share a physical P4 switch, we need to enforce data
plane and control plane isolation. For data plane isolation,
packets are processed by tenant flow rules, and tenants are
allowed to send/receive packets on the designated switch ports.
For control plane isolation, the control message needs to be
verified according to tenant identity; tenants cannot change the
behavior on other tenant data planes. Packet In and Packet Out
instructions also need to be dispatched and verified.

Pipeline Composition Because multiple projects also need
to be deployed in one P4 switch, we pre-define multiple
sub-pipelines in the P4MT P4 program. Each sub-pipeline
is the P4 program used by each project and is designed
to accommodate multiple tenant flow rules, which will be
discussed in the section on data plane isolation. In Figure 4,
Sub-pipeline is a set of flow tables that functions as a packet
processing procedure; tenants share a sub-pipeline (with data
plane isolation enforced) if more than one tenant need to
use the same packet processing procedure. Moreover, the
enrollment of a new tenant in P4MT cannot intervene the
existing packet processing of other tenants.

Fig. 4. Sub-pipeline and Tenant Pipeline

Role There are two kinds of roles in P4MT: provider and
tenant. The provider is the administrator who deploys P4
pipelines, handles tenant pipeline requests, and sets up an
isolation rule for the tenant. The tenant then processes packets
according to provider administrative rules and tenant flow
rules.

ID-based Isolation To identify each tenant and sub-pipeline
in P4MT, an unique identifier is assigned to each tenant

©Copyright IEICE - APNOMS 2021 268



and a sub-pipeline unique ID (sub-pipeline ID) to each sub-
pipeline. We reference the concept of Role ID in P4Runtime
Specification [3] for tenant identification.

Operation Scenario We describe the process of tenant
pipeline allocation by the provider in the following description
and Figure 5.

Pipeline
Configuration

Tenant Provider

P4 Switch

1
2

3

4

5

Fig. 5. Tenant Pipeline Allocation

1) Tenants apply pipelines from the provider with Pipeline
Configuration, which includes the sub-pipeline ID and
designated switch ports. Switch ports are arranged in
advance by the provider according to tenant requirements
and provider hardware deployment restrictions.

2) The provider verifies the availability of the requested sub-
pipelines and switch ports to fulfill the pipeline application;
it then assigns the tenant a Role ID.

3) The provider sets up the tenant data plane access rule.
4) The provider replies to the tenant with Role ID and its

approval of the pipeline application.
5) The tenant connects to the P4 Switch by using P4Runtime

with tenant Role ID.

B. Data Plane Isolation

To process packets for multiple tenants in the switch, we
need to 1) identify who owns the packet and 2) process the
packet according to the tenant flow rule.

Isolation Enforcement In Step 3 of the Operation Scenario
listed above, the provider translates Pipeline Configuration into
data plane flow rules. To classify incoming packets for the
tenant, the flow table (Classification and Dispatch Table) is
placed at the beginning of the P4MT pipeline, which tags the
packets with Role IDs according to the tenant switch port. This
flow table also tags packets with sub-pipeline IDs to dispatch
packets to the sub-pipelines.

After a packet is processed by the tenant pipeline, the tenant
may send the packet to the switch port of another tenant. As a
result, another table (Isolation Validation Table) is appended
at the end of P4MT pipeline to enforce pipeline configuration,
dropping the packet if it violates the pipeline configuration.

Pipeline for Multiple Tenants The tenant packet is pro-
cessed by one of the sub-pipelines. Since a sub-pipeline is
required to accommodate multiple tenant pipelines, there are
two possible table designs to support this: 1) pre-defined
multiple sets of tables for each sub-pipeline. 2) one set of
tables for each sub-pipeline and tenants sharing the tables.

The advantage of the first design is that the flow entries
are isolated in different tables. However, pre-configured tables
waste the capacity of the switch ASIC if few tenants are using
the sub-pipeline. Moreover, if the numbers of tenants exceed

the numbers of pre-configured sub-pipeline slots, P4 switch
needs to undergo flushing and re-configuration to increase the
number of tables. This will lead to pause in packet processing
and the need to re-install tenant flow entries.

In contrast, sharing tables consume minimal ASIC capacity
for tenants, and no reconfiguration is required when a new
tenant enrolls. One disadvantage of this design is that tenants
share the capacity for the maximum number of flow entries
in a table. Furthermore, access control mechanism on the
data/control plane is necessary in order to prevent tenants ma-
nipulating the packets of other tenants. Nevertheless, consid-
ering all of the aforementioned features, we adopted a shared
table design to avoid having to halt all packet processing or
delete tenant flow entries that affect the availability of the
testbed.

For data plane isolation, tables match both the Role ID
of the packet and the key of the tenant entry to ensure that
the packet is processed by tenant flow entry. Control plane
isolation is also accomplished with Role ID (Figure 6); this is
discussed in next section.

Fig. 6. Isolation on Shared Table

P4MT Pipeline Design As shown in Figure 7, P4MT
includes multiple kinds of sub-pipelines that shared tables
to accommodate tenants flow entries. To enforce isolation,
Classification and Dispatch is placed at the beginning of the
pipeline while Isolation Validation is placed at the end. These
two tables are categorized as non-shared table because they
function solely as access control; these type of tables can only
be accessed by the provider.

Fig. 7. P4MT Pipeline

C. Control Plane Isolation

Table Access Control Since a non-shared table can only
be accessed by the provider, we verify the control message
on the switch CPU (P4Runtime Server) and prevent tenants
from modifying entries in non-shared tables. For the provider
to assign the type of tables in the P4Runtime server and
the P4Runtime server to verify the control message, we
reference the Role Config design in P4Runtime Specification
[3] to design our Role Config format and implement it in the
P4Runtime server. Figure 8 demonstrates how table access
control works.

Table Entries Access Control Enabling multiple tenants
to access shared tables will result in tenants modify the

©Copyright IEICE - APNOMS 2021 269



Sub-pipelinesSub-pipelinesClassification
/ Dispatch

ProviderControllers

Role Config

Pipeline

Switch CPU

P4 Switch
Isolation

ValidationSub-pipelines

Tenant N

Fig. 8. Table Access Control

flow entries of other tenants. As a result, we modified the
P4Runtime server to record the Role ID when inserting flow
entries. If a tenant tries to modify, delete or read entries of
another tenant, the P4Runtime server will deny this action.

Packet In and Packet Out Packet In and Packet Out is an
important function for the controller to realize changes in the
network. In P4Runtime, Packet In sends packets from the P4
switch to the primary controller, while Packet Out is receiving
packets from the primary controller sent by the P4 switch.
For a multiple-tenant P4 switch, a Packet In from the data
plane needs to be dispatched to the tenant controller and a
Packet Out needs to be verified if its egress destination violates
pipeline configuration. In the P4Runtime Specification, con-
troller metadata will contain additional information for Packet
In [3]. Since the packet in the data plane is tagged with a Role
ID, the Role ID is also tagged in the controller metadata at the
end of data plane. The P4Runtime Server dispatches the packet
according to the controller metadata (Figure 9)). On the other
hand, the controller tags the packet with the packet destination
e.g., the egress port on a switch as well as the Role ID. Role
ID in the data plane is assigned at the beginning of the pipeline
according to controller metadata. Finally, Isolation Validation
in the data plane verifies packet destinations to prevent tenants
from sending packets to the switch ports of other tenants. The
operation of P4MT Packet In/Out is shown in Figure 9 and
Figure 10.

Packet
from Port

Pipeline
Packet Metadata

Role ID: 2
Packet
to CPU

Switch CPU

Controller Metadata
Role ID: 2

Packet In 
Dispatch

Tenant 1
Role ID: 1

Tenant 2
Role ID: 2Controller

P4 Switch

Fig. 9. Packet-In in P4MT

Pipeline

Packet Metadata
Role ID: 1

Packet
to Port

Packet from
Controller

Switch CPUController Metadata
Role ID: 1

Tenant 1
Role ID: 1

Tenant 2
Role ID: 2

Configuration
Validation

Controller

P4 Switch

Fig. 10. Packet-Out in P4MT

IV. EVALUATION

A. ASIC Space Overhead

Since there are limited resources (such as the number of
tables) on P4 ASIC, it is necessary to evaluate the impact that
multiple tenants and sub-pipelines have on the ASIC resources.
The targets of our evaluation in the P4MT P4 program include:

• Bit width of the ternary match (consumes TCAM)
• Bit width of the exact match (consumes SRAM)
• Bit width of the action parameter (consumes ALU)
• Number of tables
We also estimated the total ASIC space and compared it

with the overhead of multiple tenants. For ASIC capacity,
we used Tofino from Barefoot as a reference, although the
real capacity and ASIC design of Tofino are protected by an
NDA. As a result, we used the following method to estimate
ASIC capacity. We counted the evaluation targets of resource
usage on one of the P4 example programs from the Tofino
software development kit. The P4 Program is compiled and
the report from compiler shows the percentage of evaluation
target usage that is also generated. We then estimate the total
ASIC capacity.

TABLE I
ASIC SPACE EVALUATION RESULT

Overhead of
multi-tenant Basic.p4

Ternary match width 159 bits (2.71%) 216 bits (3.69%)
Exact match width 18+9*3 bits (0.39%) 0 bits (0%)

Action width 18 bits (1.04%) 27 bits (1.56%)
Table number 2 (1.04%) 3 (1.56%)

To evaluate the maximum number of sub-pipelines in the
ASIC, We increased the number of sub-pipelines in the P4MT
P4 program until pipeline compiling failed. We used the
Basic.p4 pipeline from ONOS [7] as a sub-pipeline for this
evaluation. Table I shows the estimated results. The ternary
match uses the highest percentage of ASIC capacity at 2.71%.
The max number of sub-pipelines is 13.

B. Performance

Because we implement P4MT on Tofino ASIC, and be-
cause P4MT does not require packets to be processed by
pipelines multiple times (i.e., resubmission and recirculation),
the increment in data plane latency can be neglected. To
evaluate the performance of the P4Runtime Server on P4
Switch, namely our modified control plane, we measured the
instruction latency and control packet throughput with 1, 5,
10 and 15 tenant(s) and compared the results with the original
design. The maximum number of controllers in the P4Runtime
Specification is 16, with one primary and 15 backup con-
trollers. As a result, the maximum number of tenants is 15,
with one provider and 15 tenant controllers. Furthermore, the
P4 switch is equipped with enough computational resource
to accommodate the provider and tenants controllers, which
reduces the number of servers we use (Figure 11).

A P4 switch (Inventec D5254, 8 CPU threads, and 8 GB
RAM) and two servers, each equipped with 24 CPU threads
and 128 GB RAM, were used for setting up the experiment

©Copyright IEICE - APNOMS 2021 270



environment (Topology and Environment are shown in Figure
11).

Tenant
Controllers

Tenant
Controllers

Server 1 Server 2

Provider
Controller

Tenant
Controllers

CPU

P4 Switch (Inventec D5254)

Tofino

Fig. 11. Experiment Environment

Flow Insertion Latency To enforce table access control
and table entry isolation, we modify the P4Runtime server to
verify flow insertion/modification/deletion. Thus, we measured
flow insertion latency by sending the request 300 times from
one of the tenant controllers, waiting for 0.1 seconds between
the last response and the next request. During the experiment,
only one tenant controller send out flow insertion requests.
The rest of the controllers were connected to the switch but
inactive. The results are shown in Table II below. 3.09% is
the maximum latency difference between the original and the
modified P4Runtime server; average latency increased while
the latency of the tenant controller increased. However, the
latency difference between the original and the other 15 tenants
is only 0.017 ms, which is acceptable.

TABLE II
FLOW INSERTION LATENCY

1 5 10 15
(ms) Original tenant tenants tenants tenants
Min 0.386 0.394 0.391 0.415 0.409

Average 0.556 0.558 0.56 0.571 0.573
Max 0.833 0.788 0.801 0.832 0.836
Stdev 0.083 0.073 0.078 0.077 0.083

Increased Rate 0.36% 0.69% 2.76% 3.09%
of Average

Packet In and Out Latency Packet In packets are dis-
patched by the P4Runtime server to the tenant controller, so
an increase in latency is expected when the number of tenants
increases. Packet Outs are verified by the Isolation Validation
table on the data plane, whose latency remains the same. To
measure Packet In latency accurately, the sender and receiver
need to be in the same program to avoid a problem with time
synchronization between two servers/programs. As a result, a
round trip packet is sent by the tenant controller. The process
is as follows (Figure 12). A Packet Out is sent by one of the
tenant controllers, which specified a Role ID and the egress
port as ”CPU Port.” The P4 pipeline then sends the packet
back to the tenant controller as a Packet In. We measured the
latency 300 times and waited 0.1 seconds between every two
measurements.

The results are shown in Table III. 4.74% (0.034 ms) is the
maximum difference between the original and the modified
P4Runtime server.

Packet In Throughput Packet In packets are dispatched in
the P4Runtime server, which compares the Role IDs in the

Pipeline

Switch
CPU

Packet In
Dispatch

Tenant 1 Controller

P4 Switch

Fig. 12. Packet In and Packet Out Latency
TABLE III

PACKET IN AND PACKET OUT LATENCY

1 5 10 15
(ms) Original tenant tenants tenants tenants
Min 0.396 0.432 0.437 0.445 0.427

Average 0.718 0.725 0.752 0.748 0.745
Max 1.268 1.118 1.293 1.302 1.082
Stdev 0.266 0.394 0.462 0.305 0.344

Increased Rate 1.00% 4.74% 4.21% 3.85%
of Average

control metadata with the ones in the controller connection
list. The workload of the P4Runtime server increases when
more tenants are connected to the server because there are
more Role IDs in the controller connection to compare. We
evaluated the maximum Packet In throughput to see if the
modification impacts the P4Runtime server performance.

To measure the maximum Packet In throughput, we connect
one server to the switch to generate traffic and install flow
rules to redirect the traffic to one of the tenant controllers.
The tenant controller waits for 30 seconds at the start of this
evaluation for stable throughput. We then measure the average
throughput for 10 minutes.

The results are shown in Figure 13. Before 1380 PPS
(packets per second), the server sending rate and the controller
receiving rate are linear, although the receiving throughput
does not increase as much as the sending rate. On the
other hand, the modified P4Runtime server shares a similar
characteristic with the original one but has a slightly lower
throughput than the original.

1,300 1,350 1,400 1,450 1,500 1,550 1,600 1,650
1,300

1,310

1,320

1,330

1,340

1,350

1,360

1,370

1,380

1,390

1,400

1,410

Server Sent Packet (PPS)

R
ec

ei
ve

d
Pa

ck
et

(P
PS

)

Origin
1 Tenant
5 Tenants

10 Tenants
15 Tenants

Fig. 13. Packet In Throughput

C. P4MT-enabled P4 Network
Since the goal for P4MT is to accommodate multiple

projects on a P4 network, we emulated a P4MT-enabled

©Copyright IEICE - APNOMS 2021 271



network with two tenants by using software switches and
mininet. Tenant 1 consists of Hosts 1-1, 1-2, and 1-3, while
Tenant 2 consists of Hosts 2-1 and 2-2. Three P4 switches
are connected, as shown in Figure 14. There are two types of
sub-pipelines on the switches, and a tenant can choose either
of them to process its packets. For Tenant 1 traffic, the packet
goes through the load balancer on P4 Switch 1, changes its
source MAC address on Switch 2 and 3, then arrives at Host
1-2 or 1-3. The destination MAC address is changed when the
packet is being send back to Host 1-1. For Tenant 2 traffic,
a simple switch function is performed on both Switch 1 and
Switch 2. Host 2-1 and Host 2-2 can ping each other. For
this test net, each switch port is designated to the traffic of a
specific tenant. The switch ports marked in red in Figure 14
belongs to Tenant 1; the ones in blue belongs to Tenant 2.
Although Tenant 1 and 2 both use the same sub-pipeline on
Switch 2, it is not possible to intervene with the traffic of one
another. As mentioned previously, each switch will tag tenant
packets with their associated Role IDs when they enter the
designated port of the tenant. Therefore, the sub-pipeline tables
of Switch 2 will identify the Role IDs to prevent intervention
among different tenant flows.

P4 Switch 2

Host 2-1

Host 1-1 Host 1-3

Host 2-2

Host 1-2

Load Balancer

Physical Address Translation
+ Simple Switch

Physical Address Translation
+ Simple Switch

Load Balancer

Physical Address Translation
+ Simple Switch

Load Balancer

P4 Switch 1

P4 Switch 3

31

3 2

2
5

4

2 1

4 1

Fig. 14. P4MT-enabled P4 Network

V. CONCLUSION, DISCUSSION AND FUTURE WORK

We designed, implemented and evaluated P4MT as a multi-
ple tenant solution for a P4 switch. We leveraged Role ID
in P4Runtime to tag and isolate tenant traffic in the data
plane. Tenant traffic is only processed by tenant flow rules in
the shared tables. On the control plane, access control is set
up to enforce Role Config and Pipeline configuration, which
prevents tenants from modifying flow entries in the non-shared
tables. Furthermore, P4MT includes multiple P4 programs and
can dispatch Packet Ins to the right tenant controller and verify
the Packet Out destinations. We evaluated the overhead of
multiple tenants on ASIC capacity and the performances of
data plane latency, flow insert latency, Packet In/Out latency
and Packet In throughput. The result shows that the overhead
is negligible.

In P4MT, a packet is dropped if it violates the switch port
usage in the Isolation Validation table. However, a tenant may
accidentally set the wrong switch port on the packet and be
confused when the packet is dropped without any notice.

Currently, P4 Externs are not available. Unlike flow entries,
P4 Externs have more complex mapping to tenants, which also
requires additional design and implementation.

Moreover, since P4MT emulates multiple pipeline functions
by combining multiple pipelines into a single pipeline, the

structures and resources for parser and match-action tables
from different pipelines might conflict with each other. This
could be migrated automatically in future works.

Current designs still require manual operation for pipeline
migration, meaning that an operational plan from pipeline
development to deployment on the P4 network is needed. For
pipeline development, the testbed provider shall provide an
emulated P4 network, such as mininet or BMv2 in a virtual
machine, for a developer. After the developer submits the P4
program (pipeline) to the provider, the provider migrates and
deploys the pipeline on a simple P4 network. The developer
needs to verify the pipeline on the provider site because
pipeline behavior could change after the environment is altered
due to the migration. After migrating pipelines from different
projects, the pipeline can then be deployed to the P4 network,
e.g., i-P4EN.

Finally, a better OAM interface is also required. Isolation
rules on data and control planes are currently manually in-
stalled, which increases the complexity of the production
environment. In addition, a management function user inter-
face for the tenant is desired. This can provide non-critical
configurations for a tenant (such as choosing another sub-
pipeline) and reduces the amount of manual work by the
provider.

ACKNOWLEDGMENT

This work was supported in part by NSF IRNC Grant Award
#1450871, NSF Research Infrastructure Grant CNS-1419138,
USA; in part by The Featured Areas Research Center Program
within the Framework of the Higher Education Sprout Project
by the Ministry of Education, Taiwan; in part by the Ministry
of Science and Technology, Taiwan, under Grant 109-2221-E-
009-077 and 110-2221-E-A49 -044 -MY3; and in part by the
Ministry of Economic Affairs, Taiwan, under Grant 107-EC-
17-A-02-S5-007.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev. April 2008,
pp. 69-74.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[3] The P4.org API Working Group, “P4runtime Specification version
1.0.0,” Jan. 2019. [Online]. Available: https://s3-us-west-2.amazonaws.
com/p4runtime/docs/v1.0.0/P4Runtime-Spec.html

[4] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, vol. 1, p. 132, 2009.

[5] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: Make Your Virtual SDNs
Programmable,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’14. New York, NY, USA:
ACM, 2014, pp. 25–30

[6] D. Hancock and J. van der Merwe, “HyPer4: Using P4 to Virtualize the
Programmable Data Plane,” in Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’16. New York, NY, USA: ACM, 2016, pp. 35–49

[7] “ONOS - ONOS - Wiki.” Nov. 2019. [Online]. Available:
https://wiki.onosproject.org

©Copyright IEICE - APNOMS 2021 272


