
Design and Implementation of Proactive Firewall System

 in Cooperation with DNS and SDN

Tomokazu Otsuka1, Nariyoshi Yamai2, Kiyohiko Okayama3, Yong Jin4, Hiroya Ikarashi5 and Naoya Kitagawa6

1 Graduate School of Natural Science and Technology, 3 Center for Information Technology and Management,

Okayama University

3-1-1, Tsushima-naka, Kita, Okayama 700-8530, Japan
2,6 Institute of Engineering, 5 Graduate School of Engineering, Tokyo University of Agriculture and Technology

2-24-16, Koganei, Tokyo 142-8588, Japan
4 Global Scientific Information and Computing Center, Tokyo Institute of Technology

2-12-1 O-okayama, Meguroku, Tokyo 152-8550, Japan

E-mail: 1 otsuka.net@s.okayama-u.ac.jp, 2 nyamai@cc.tuat.ac.jp, 3 okayama@okayama-u.ac.jp,
4 yongj@gsic.titech.ac.jp, 5 hikarashi@net.cs.tuat.ac.jp, 6 nakit@cc.tuat.ac.jp

Abstract: Recently, unauthorized accesses from the

external networks to the internal hosts are sharply

increasing. Although many firewall appliances are widely

utilized as one of the countermeasures, its throughput is not

high enough especially when it performs deep packet

inspection. In order to solve this problem, we propose a

proactive firewall system which consists of two or more

firewall appliances with Software Defined Network (SDN)

adaptively choosing a proper one for each communication

flow based on, for example, whether its peer is trusted or

not. To obtain the peer IP address in advance, the system

introduces EDNS Client Subnet option of DNS. According

to the performance evaluation results on the prototype

system, we confirmed that the prototype system could

separate flows of trusted hosts from other flows effectively.

Keywords—Firewall, DNS, SDN, Traffic Engineering

1. Introduction

Since the attempts of malicious accesses and attacks from

the external networks to the internal hosts or networks are

sharply increasing today, most organizations introduce

some firewall or UTM (Unified Threat Management)

appliances (hereafter firewalls for simplicity) as one of the

solutions to protect their hosts and networks from those

external accesses and attacks.

 However, most of these firewalls have to avoid high-

load inspection such as Stateful Packet Inspection (SPI) [1]

and Deep Packet Inspection (DPI) [2] properly or monitor

only suspicious traffic since those inspections can possibly

cause decrease of the firewall performance and throughput.

Furthermore, the network administrators have to bear a

heavy burden to deploy the policies on the firewall system

manually based on the layer 3 and 4 information and only

pre-defined communications can be controlled by the

policy-base firewall system.

 To solve these problems, we propose a proactive

firewall system which consists of two or more firewall

appliances with Software Defined Network (SDN)

adaptively choosing a proper one for each communication

flow, based on the source and destination information. This

system obtains flow information in advance by introducing

EDNS Client Subnet option [3] of DNS. By separating

normal communication from suspicious communication,

the proposed firewall system not only can support high

performance for the clear communications but also can

decrease the administrative cost.

 In the rest portion of this paper, we describe the design

of the proposed firewall system in Section 2. In Section 3,

we describe implementation and evaluation of the proposed

firewall systems. Finally in section 4, we conclude this

paper and introduce some future works.

2. Design of the Proactive Firewall System

2. 1 Network topology

As shown in Figure 1, we consider that the target network

topology consists of multiple firewalls (FW1, FW2) and a

pair of Layer 3 Switches (L3SWs) or Load Balancers (LBs).

In this figure, we assume that these FWs perform different

inspection. For example, FW1 performs DPI but FW2 does

not. L3SWs/LBs forward the packets of the specific flows

to the same firewall appropriately, based on layer 3 and

layer 4 information such as the source and destination IP

addresses as well as port numbers.

 Such a network topology is well-known as a typical

configuration in most organizations and we also consider it

is easy to setup a similar network environment for many

other organizations.

L3SW/LB

Internal Network

L3SW/LB

Internet

DMZFW1 FW2

Figure 1 Target network topology.

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

25

2. 2 Basic idea of the proposed proactive firewall system

Prior to most TCP/IP communications, domain name

resolution with Domain Name System (DNS) occurs. In

current DNS protocol, the information of the client which

initializes the query is not included in the query message

and due to the existence of the DNS cache server it is not

guaranteed that the server side DNS server can receive all

the client information under the client side DNS cache

server. Nonetheless, the characteristic that most clients

launch domain name resolution just before the application

layer communications is very important. Accordingly, we

focus on this characteristic and expand the DNS protocol by

adding the function of embedding the client IP address into

the query message when performing domain name

resolution. Moreover, we also add another function to

solve the caching problem and make the server side

authoritative DNS server receive all the client IP address.

Consequently, the firewall system in the authoritative DNS

server side is able to check both the source and destination

IP addresses of the communication which is going to

happen later and also can dynamically change its policies

appropriately.

2. 3 Overview of the proactive firewall system

As mentioned in the previous section, we consider a

firewall system consisting of multiple firewalls performing

different inspection. To make all packets of a flow go

through a specific firewall, we use an SDN controller and

two SDN switches instead of L3SWs or LBs.

 To choose an appropriate firewall for a flow based on

layer 3 and layer 4 information, we introduce a kind of

blacklists and/or whitelists internally or externally. For

example, an administrator of the firewall system may

provide a list of trusted hosts as a whitelist. He/she also

may use an external DNS Block List (DNSBL) such as

Spamhous XEN [3]. We can also use other services such as

GeoIP services [4], which replies the country associated

with a given IP address, as implicit blacklists or whitelists

based on the peer’s country.

SDN

SW2

SDN

SW1

SDN

Controller

client

DNS

client

FW1 FW2

server DNS

server

DNSBL

DNSWL

2

1

7

7

5

4

Internet

2

3

6

BL WL8

Figure 2 A proactive firewall system configuration.

 A typical configuration of the proposed proactive

firewall system is shown in Figure 2. In this figure, we

assume that FW1 is configured for conventional check for

the communications between an internal host and a trusted

host registered in the whitelist while FW2 is set for high-

load inspection for other communications. Besides, at the

initial stage of the entire system, all communications are

configured routing to the FW2 by the SDN Controller.

 Under this circumstance, the procedures of an example

that a client in the Internet accesses an inside server in the

organization network are described in the following and the

step numbers are corresponding to the numbers in the figure.

Here, we mainly describe the name resolution procedures

and firewall policies while the detail of application protocol

will be omitted.

1. A client in the Internet requests the IP address (A

record) of the server to its client-side DNS cache server

(DNSclient). Then, the DNSclient sends to the server-

side authoritative DNS server (DNSserver) the queries

incuding the IP address of the client.

2. When the DNSserver receives a query, it checks if the

query message includes the client IP address. If it does

include the client IP address, the DNSserver check if

the DNSBL and DNSWL have it registered, otherwise

the procedure goes to the step 4.

3. The DNSserver registers the client IP address into the

temporary whitelist (WL) or blacklist (BL) in the SDN

Controller according to whether the DNSBL and

DNSWL have the client IP address registered.

4. The DNSserver replies the server information such as

the A record to the DNSclient. Note that the

DNSserver may reply an IP address of the honeypot or

a black hole IP address (a special IP address for

dropping the incoming packets) instead of the real

server IP address if the client IP address is registered in

DNSBL. After that, the DNSclient replies the

messages received from the DNS server to the client.

5. The client starts to communicate with the server. The

first packet arrives at SDN Switch 1 (SDN SW1).

6. SDN SW1 asks the SDN Controller how to process the

incoming packet.

7. The SDN Controller determines which firewall the

incoming packet should go through or to discard the

incoming packet silently, consulting with WL and BL.

Then the SDN Controller registers the flow entry of the

incoming packet into both SDN Switches.

8. SDN SW1 processes the incoming packet according to

the flow entry. Afterward, all the packets of the same

flow are processed in the same manner.

2. 4 Notification of the client IP address [5]

In order to notify the client IP address to the server side

authoritative DNS server, we use Client Subnet option [3]

of DNS extension. In this method, the client side DNS

cache server embeds the client subnet option (the subnet

address and subnet mask of the client) into the query

message before sending it out. Basically, this method

considers the network address notification but if we set the

26

subnet mask with 32-bit it is also possible to notify the

entire IP address to the server side authoritative DNS server.

 In the proposed system, the client side DNS cache

server needs to query the server side authoritative DNS

server everytime when the client requests the name

resolution for contents even if they are resolved before.

However, if the caching function works in the DNS cache

server, then the proposed system may not work as we

expected since the same name resolution request from a

different client may hit the cached record in the client side

DNS cache server without notifying the different client IP

address to the server side authoritative DNS server.

 In order to solve this problem, we consider to disable

the partial caching function in the query side DNS cashe

server. That is, when the query side DNS cache server

receives the same request of name resolution from a

different client then it ignores the old information including

A , AAAA records and queries to the server side

authoritative DNS server directly again. The detail of this

function is discussed in [5].

3. Implementation and Evaluation of the

Prototype Systems

3. 1 Implementation of the prototype systems

We have implemented two prototype systems, one for

functionality evaluation at Okayama University (OU

hereafter) and the other for performance evaluation at

Tokyo University of Agriculture and Technology (TUAT

hereafter). The layouts of two prototype systems, including

clients and DNS cache server, are almost the same, as

shown in Figure 3. Since we did not have any real firewall

appliances, we use two servers, namely Server 1 and Server

2 instead of FW1 and FW2 of Figure 1, respectively. The

IP addresses shown in Figure 3 are those for functionality

evaluations in a local network environment.

OpenFlow

Controller

Trema

MySQL

Client side

DNS cache server

Server side

DNS server
Server1

(FW1)

Server2

(FW2)

Client1

(trusted)

Client2 Client3

Open vSwitch

WL

192.168.1.5 192.168.1.4

150.46.47.121

1

2 3

100Mbps

150.46.47.121

Figure 3 The layout of the prototype system (OU).

 The procedure of the prototype system is almost the

same as mentioned in Section 2.3, except for having a built-

in whitelist in the Server side DNS server instead of

external DNSBL and DNSWL. As an OpenFlow

Controller, we used Trema [6] along with MySQL [7] for

the temporary whitelist. As an OpenFlow Switch, we used

Open vSwitch [8]. The server side DNS server was built

with Perl module “Net::DNS::Nameserver” [9].

3. 2 Functionality evaluation of the prototype system

We performed functionality evaluation of the prototype

system at OU. The specifications of the components are

shown in Table 1. In this evaluation, only the IP address of

Client 1 was registered in WL on the Server side DNS

server. Therefore, all the packets of Client 1’s flows were

forwarded to Server 1 while all the packets of Clients 2 and

3’s flows were forwarded to Server 2. We had Clients 1

and 2 send ICMP echo packets to Server 1. Accordingly,

those packets sent from Clients 1 and 2 were forwarded to

Server 1 and 2, respectively.

 After sending ICMP echo packets, flow entries and data

paths were created in the Open vSwitch, as shown in

Figures 4 and 5, respectively. According to these results,

we confirmed that the prototype system at OU worked well

as we expected.

Table 1 The specifications of the componets (OU).
Host type CPU/Main Memory Running OS

Server side DNS server Xeon E5620 2.40GHz/1GB FreeBSD 8.2-RELESE

Client side DNS server Xeon E5620 2.40GHz/1GB FreeBSD 8.2-RELESE

OpenFlow Switch Core 6700 2.66GHz/2GB Ubuntu 12.04-Release

OpenFlow Controller Core i5-4440 3.10GHz/8GB Ubuntu 12.04-Release

Clients 1-3 Xeon E5620 2.40GHz/1GB FreeBSD 8.2-RELESE

Server 1 Core i3-2100 3.10GHz/2GB FreeBSD 8.2-RELESE

Server 2 Core 2 6300 2.66GHz/2GB Ubuntu 10.04-Release

Figure 4 The flow entries of the Open vSwitch (OU).

Figure 5 The data paths of the Open vSwitch (OU).

OpenVSwitch:~$ sudo ovs-dpctl dump-flows br0
in_port(1),eth(src=00:0d:28:66:55:00,dst=00:30:67:e3:1d:ba),eth_type(0x
0800),ipv4(src=150.46.47.121,dst=192.168.1.5,proto=1,tos=0,ttl=63,frag
=no),icmp(type=8,code=0),packets:6,bytes:588,used:0.088s,actions:2
in_port(2),eth(src=00:30:67:e3:1d:ba,dst=00:0d:28:66:55:00),eth_type(0x
0800),ipv4(src=192.168.1.5,dst=150.46.47.121,proto=1,tos=0,ttl=64,frag
=no),icmp(type=0,code=0),packets:6,bytes:588,used:0.088s,actions:1
in_port(1),eth(src=00:0d:28:66:55:00,00:30:67:e3:1d:ba),eth_typ(0x0800),
ipv4(src=150.46.47.129,dst=192.168.1.5,proto=1,tos=0,ttl=63,frag=no),ic
mp(type=8,code=0),packets:6,bytes:588,used:0.088s,actions:set(ipv4(sr
c=150.46.47.129,dst=192.168.1.4,prot=1,tos=0,ttl=63,frag=no)),2

OpenVSwitch:~$ sudo ovs-ofctl dump-flows br0
NXST_FLOW reply (xid=0x4):
cookie=0x5,duration=3.474s,table=0,n_packets=0,n_bytes=0,priority=65
535,ip,nw_src=150.46.47.121,nw_dst=192.168.1.5 actions=output:2
cookie=0x6,duration=3.474s,table=0,n_packets=0,n_bytes=0,priority=20
0,ip,in_port=2 actions=output:1
cookie=0x7,duration=3.474s,table=0,n_packets=0,n_bytes=0,priority=0
actions=mod _nw_dst:192.168.1.4,output:3

27

3. 3 Performance evaluation of the prototype system

Then, we evaluated the performance of the prototype

system at TUAT. The layout of the prototype system was

almost the same as shown in Figure 3, except for absence of

both DNS servers. Instead of WL in Server side DNS

server, only the IP address of Client 1 was registered in

MySQL of OpenFlow Controller in advance. Therefore, all

the packets of Client 1’s flows were forwarded to Server 1

while all the packets of Clients 2 and 3’s flows were

forwarded to Server 2. Since we assumed the throughput of

real firewalls is not so high compared with that of the

network, we reduced the bandwidths of the links to Servers

to 100Mbps while the bandwidths of other links were

1Gbps. The specifications of the components are shown in

Table 2.

 In order to measure the throuput between Client 1 and

Server1, we used “iPerf” [10] for 10 seconds and calculated

the average throuputs over 5 measurements. To generate

attack traffic, we ran “hping3” [11] on Clients 2 and 3 with

“--faster” or “--flood” options, which mean sending ICMP

packets “100 per second” or “as fast as possible,”

respectively. For comparison, we also measured the

throuputs in some system configurations where “an L2SW

was used instead of Open vSwitch and all traffic was

forwarded to Server1” (L2SW), “Open vSwitch was used

and and all traffic was forwarded to Server 1” (All to

Server1), and “attack traffic was dropped” (Attack dropped),

as well as “attack traffic was forwarded to Server 2”

(Attack to Server2). The result of the performance

evaluation is shown in Figure 6.

Table 2 The specifications of the componets (TUAT).
Host type CPU/Main Memory Running OS

OpenFlow Switch Pentium 1403 v2 2.60GHz/8GB Debian 8.3

OpenFlow Controller Xeon E31245 3.30GHz/8GB Debian 8.3
Clients 1-3, Servers 1-2 Core 2 DUO 2.66GHz/2GB Debian 8.3

0

20

40

60

80

100

120

L2SW All to Server1 Attack dropped Attack to Server2

A
ve

ra
ge

 t
h

ro
u

p
u

t
(M

b
p

s)

System configuration

no attacks one faster one flood two fasters two floods

Figure 6 The average throuputs against kinds of attacks in

various system configurations (TUAT).

 According to this figure, we can find that throuputs of

“L2SW” and “All to Server1” were considerably reduced

due to attacks, while throughputs of “Attack dropped” and

“Attack to Server2” were high enough even under heavy

attacks. Consequently, we have confirmed that although

the overhead of OpenFlow Switch is not negligible

compared with that of L2SW, the proposed proactive

firewall system can protect the traffic of trusted hosts from

other traffic.

4. Conclusions

In this paper, we proposed a proactive firewall system in

cooperation with SDN and DNS. The proposed system

introduces the client-subnet option of EDNS0 to obtain the

peer IP address in advance and protects traffic of the peer

from other traffic using SDN technogoly. Through the

funcationality evaluation and the performance evaluation,

we confirmed the prototype system worked well as we

expected and performed good throughput. The future

works include the evaluations of the entire system with the

real firewall appliances.

Acknowledgement

This work was partially supported by JSPS Grants-in-Aid

for Scientific Research (KAKENHI) Grant Number

JP25330105.

References

[1] S. Y. Yoon, B. K. Kim, J. T. Oh and J. S. Jang, “High

Performance Session State Management Scheme for

Stateful Packet Inspection”, Managing Next Generation

Networks and Services, Lecture Notes in Computer

Science, Vol.4773, pp.591-594, 2007.

[2] Y. H. Cho, W. H. Mangione-Smith, “Deep Packet Filter

with Dedicated Logic and Read Only Memories,” Field

Prog. Logic and Applications, Aug. 2004, pp. 125-134.

[3] C. Contavalli, W. van der Gaast, D. Lawrence and W.

Kumari: “Client Subnet in DNS Queries,” RFC7871,

IETF, 2016.

[4] MaxMind, Inc., “GeoIP® Databases & Services:

Industry Leading IP Intelligence | MaxMind” (online),

available at <https://www.maxmind.com/en/geoip2-

services-and-databases> (accessed 2016-05-25).

[5] T. Otsuka, Gada, N. Yamai, K. Okayama and Y. Jin,

“Design and Implementation of Client IP Notification

Feature on DNS for Proactive Firewall System,” Proc.of

2015 IEEE 39th International Conference on Computer

Software and Applications (COMPSAC 2015)

Workshops, pp.127-172, 2015.

[6] Trema, “Trema : Full-Stack OpenFlow Framework in

Ruby and C” (online), available at <http://trema.github.io/

trema/> (accessed 2016-05-25).

[7] Oracle Corporation and/or its affiliates, “MySQL”

(online), available at <http://www.mysql.com/> (accessed

2016-05-25)

[8] Open vSwitch, “Open vSwitch” (online), available at

<http://openvswitch.org/> (accessed 2016-05-25).

[9] M. Fuhr, C. Reinhardt, R. Martin-Legene, and O.M.

Kolkman, “Net::DNS::Nameserver” (online), available at

<http://search.cpan.org/dist/Net-DNS/lib/Net/DNS/

Nameserver.pm> (accessed 2016-05-25).

[10] V. Gueant, “iPerf - The TCP, UDP and SCTP network

bandwidth measurement tool” (online), available at

<https://iperf.fr/> (accessed 2016-05-25).

[11] S. Sanfilippo, “Hping - Active Network Security Tool”

(online), available at <http://www.hping.org/> (accessed

2016-05-25).

28

