
A Flexible P4-Based Pin-Point In-Band Network Monitoring
Toshihiro Sato

Graduate School of Computer and Information Sciences
Hosei University

Tokyo, Japan
toshihiro.sato@dsl.k.hosei.ac.jp

Toshio Hirotsu
Fuculty of Computer and Information Sciences

Hosei University
Tokyo, Japan

hirotsu@hosei.ac.jp

Abstract—Telemetry is a new generation network monitoring
technology, which could reduce the loads of probes by setting
the frequency of probes and target of monitoring to switches.
In-band Network Telemetry (INT) is a technique of telemetry
which enables precise monitoring without reducing the traffic
rate. It embeds the telemetry headers including information
and instructions of INT processes, then INT enabled switches
respond to the instructions in hardware-level. However, if all INT
compatible switches simply respond the instruction, it will cause
explosive growth of amount of collecting information and makes
the load of analysis much heavier. In this paper, we discuss about
design and implementation of selective telemetry mechanism
which is fully controllable from edge-side. Using the proposed
mechanism, administrators can select the switches which is
required to be analyzed, then reduce the cost of monitoring.
In our proposed mechanism, types of information and list of
target switches are marked in the INT header, and only the
target INT-enabled switches process the INT operation according
to the instruction in the INT header of each packet. Our
proposed approach will increase the controllability of telemetry
and enhance the flexibility of management of large-scale network.

Index Terms—Software Defined Networking, In-band Network
Telemetry

I. INTRODUCTION

In-band Network Telemetry (INT) is attracting attention in
the context of service operation on cloud infrastructure and
management of wide-area communication infrastructure. INT-
enabled switches insert INT header into forwarding packets, to
notate commands and collect data for network analysis. This
mechanism enables precise network measurement without the
performance degradation of network switches.

In the hyper-scale network environment, it is difficult to
provide sufficient monitoring performance using SNMP which
realizes monitoring by sending request to every switch on
each moment. Generated SNMP requests will be explosively
increased in the hyper-scale network, and switches consume
the processing time to handle these requests. Finally, these
overloads will affect the performance of real network traf-
fic. INT is a promising technology that enables lightweight
monitoring of hyper scale network. However, if all switches
in the hyper-scale network respond to the INT instruction
embedded into the packet, increase of the INT information
will exhaust the INT header space, and will cause huge of
gathered information to analysis.

Another problem will cause on monitoring the service level
on the cloud platform. In the recent service architecture, many
various microservices are working and cooperate each other to
provide a single task. On monitoring these services, supports

for the distributed tracing is required in the cloud platform.
INT will be useful technology to realize such tracing services
in the platform level, and the control interface to specify the
monitoring targets, such as virtual NICs of the microservices,
will need be opened for cloud users.

In this paper, we propose a pin-point selective network
telemetry technique, that enables to specify the monitoring
network entity flexibly from the edge-side. We also implement
a prototype system using BMv2 P4 model switch and show
the feasibility of our proposed approach.

II. RELATED WORKS

A. Sel-INT

Sel-INT [1] reduces collecting data by controlling sampling
rate of each switches with controller-based SDN. In Sel-INT,
extended Openvswitch controls packets with its bit string to
enable execution of INT. The extended switch supports three
extended matching rules for judging existence of INT header,
type of adding telemetry data, and source of packet is the
controller of not. The controller decides the sampling rate
of each switch according to the topology of switches, then
sets the rates to each switch. When a switch receives the
message from controller, it extracts the sampling rate and
marks it to its own flow table, then processes INT process
for following packets at the sampling rate. Sel-INT enables
telemetry only for the specific switches, but stable SDN control
core is required, and hard to choose monitoring network entity
arbitrary from edge-side.

B. PINT

PINT [2] reduces the amount of collecting data by selecting
INT operations probabilistically, and provide similar accuracy
with normal (non-PINT) INT. Each switch choose processing
INT operations from hash of the ID embedded in the packet
and switch ID. The telemetry information is separated into
several blocks, and choose a block to embed into a packet INT
header. PINT achieves both of reduction of the telemetry data
size and accuracy of the telemetry by choosing INT operation
and telemetry blocks using the hash function following a
uniform distribution. However, it is difficult to choose the
telemetry targets pin-point using hash function.

III. DESIGN AND IMPLEMENTATION OF PIN-POINT INT

Proposed system is composed of edge-side controller,
switches, and data analyzer (Figure 1). Edge-side controller
converts user monitoring request to the detailed INT instruc-
tions, then control edge-switch to embed it into packets. Each

©Copyright IEICE - APNOMS 2021 258

①Wish List

② Header Insertion Order

③ Selectively Collect Telemetry

Ingress Forward Forward Egress

- Insert INT Header
- Normal Forwarding - Add Telemetry - Normal Forwarding

- Add Telemetry
- Throw to Analyzer

④ Aggregate & Analyze

Host

Controller

End User

Fig. 1: Structure of Prototype System

switch reads INT header of each packet and perform the
INT processing based of the INT instruction. INT instructions
contain the information whether each switch performs INT
operation or not. It also includes the type of INT request.
When a switch is the target of INT action, it checks the type
of requested data and insert it into INT header. It also sends
the gathered telemetry information to the edge-side controller
when all INT data for the packet has been collected. Data
analyzer extracts the telemetry data from the message and
accumulate them.

A. INT Header

Our proposed scheme encodes the instruction of each switch
INT behavior into the INT header. Figure 2 shows the structure
of proposed INT header. It contains six fields, Mapinfo,
Length, etherType, Ingress, Point and Metadata.
MapInfo is 2-byte bitmap information to instruct a type of
requested telmetry data. We defined 6 types of telemetry
data, Input Port Number, Output Port Number, Hop Latency,
Bandwidth, Switch ID and Timestamp. An instruction can
include a set of arbitrary types, where data size is up to 8
bytes.
Length shows the number of telemetry data in that INT header.
Total size of telemetry data can be calculated as the product
of each telemetry data size derived from the MapInfo and this
Length information.
etherType tells the type of header comes next to this INT
header.
Ingress and Point is used to express the target switches.
Metadata contains the telemetry data from all target switches.
In Figure 2, Metadata fields are depicted in the case when the
size of each telemetry data is 1 byte.

Next, we describe how the target switches are decided using
Ingress and Point fields. Ingress shows the number of hops
between edge-side controller and the first starting switch that
handles INT operation. The number of the field is decreased
on each hop until the packet reaches starting switch. Switches
run the INT instruction if the Ingress field denotes 0, which
means that the packet has been passed the directed number
of hops from edge-side controller. Switches after the starting
point check the Point field to determine whether the switch
process the INT operation or not. Point field is 24-bit width
bitmap. Each bit of the field act as a boolean flag to direct the
INT execution, so following 24 switches can handle the INT

operation. On checking Point field, each switch processes the
INT operation if the first bit of the field is 1, then shift the
Point field bits before forwarding. The switch that is directed
to process the INT operation checks the MapInfo field, insert
the directed telemetry data into INT header, and then add 1
to Length field. The newest added telemetry data is located
next to the Point field. When Point field become 0, no more
switches add telemetry data to this packet, so the switch send
a whole telemetry data.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| MapInfo | Length | etherType |

+-+

| Ingress | Point |

+-+

| Metadata n | Metadata n-1 | ... | Metadata 1 |

+-+

Fig. 2: Structure of INT Header
B. Switch

We describe the design and implementation of the proposed
INT enabled switch using P4. In the Parse step, P4 switch
separates a packet into four structures, Ethernet header, INT
header, INT metadata and IPv4 header. Metadata fields in
our proposed INT header are separately managed as the P4
array structure that handles multiple same structure data. In
P4 switch, it first separates INT header and read the value
of MapInfo field and Length field to determine the size and
amount of INT metadata, then prepare a header structure called
meta which has the same bit length with an INT metadata
according to the MapInfo field. Each P3 array data has the
same size with the determined meta structure, and the array
has Length counts elements to store the parsed INT metadata
embedded in the packet. All packet data following the INT
header are stored to a structured data and are preserved until
the Deparse step.

In the Ingress step, the switch edits each field of INT header
structure parsed in the Parse step, to control the behavior
of packet after the next hop. Other ingress actions, such as
checking destination IP address, finding the route, editing
MAC addresses, which are not related to the proposed INT
operation are also handled in this step. And proposal system
is assuming the use of INT, so checking and editing each field
of INT header is also handled in here. This Ingress step edits
the field but does not add the information, so P4 switch can
process this step just checking and editing the prepared Ingress
field of INT header.

After the processing of the Ingress step, P4 adds information
to the packet in the Egress step. In the common P4 processing
model, this step is used to insert new headers. In our proposed
system, only the INT metadata is inserted, and it is already
prepared as the P4 array structure. Only the task of this step
is handling all INT action except editing Ingress field of INT
header, which is already handled in Ingress step.

First, P4 checks the value of Ingress field. If it is 0, P4
checks the first bit of Point field. As written in Section III, all
other INT actions are processed only if the first bit is 1. On
processing the INT operations, P4 checks MapInfo field and

©Copyright IEICE - APNOMS 2021 259

Controller

User
Interface

INT Header
Manager

Analyzed Result Telemetry

Topology

INT Maker

Commands

Create

Create Insertion Header

send
Request

Fig. 3: Design of Controller

create a new structure with as same bit size as each element of
INT metadata array. This structure is used to store all requested
information inside. After all data are stored into the structure,
P4 switch inserts this to the top of INT metadata array. This
action could be easily achieved by using the build-in function
called push top in P4, which inserts blank element into the
top of array, then overwrites the blank element with the new
structure. The inserted elements are treated as invalid elements
in initial, then P4 switch need to mark the element as valid
using another build-in function called setValid. Finally, the
switch increments the Length field.

In the last Deparse step, P4 restructures all data into packet
format, which are parsed in Parse step and edited in Ingress
and Egress steps. The packet structure separated in the Parse
step, such as Ethernet header, INT header, INT metadata and
IPv4 header, are ordered same as the original order. If some
fields of the packet are removed at this switch, it is also
stripped at this step. All packet data following INT header
are automatically set to the next of last called header structure
after the ordering of header structures has been finished.

C. Controller

Controller runs near the edge of INT-enabled area in the
network. User of the INT, such as administrator, operator,
or system developer, request the controller to collect some
kinds of telemetry data on specified switches. On receiving
the request, the controller creates an INT header which could
process the request, then pass it to the edge switch to direct
the insertion of the INT header.

Figure 3 shows the detail of action of the controller.
The controller has two databases called “Telemetry” and
“Topology”, and consists of three modules; “User Interface”,
“INT Maker”, and “INT Header Manager”. Telemetry database
contains the newest telemetry data collected from switches
in the monitoring environment, and topology database holds
the list of the switches and links in the monitoring network
environment.

User Interface shows the status of the network environment
in real-time and receives the INT actions’ requests from users.
The visual image of the status monitor shown to the users
is created from all switch IDs and links between switches
in monitoring environment from topology database. In this
image, switches and links are drawn with icons and lines with
switch ID, and collected telemetry data are mapped on the
figure with color-coding switch icons according to the anomaly
of the telemetry data. The users’ requests are recorded in the
controller, and users could change INT action whenever they
want as the response from the monitoring map.

Data Analyzer Server

...eth1 eth2 eth3 eth4 ethn

Monitor NIC & Capture Packets

MolochCapture

Messages with collected INT data

① Save Raw Data
Elasticsearch TelemetryDB

Analysis Program

② Collect Saved
Packet Data

③ Extract
Telemetry

Fig. 4: Design of Data Analyzer

INT Maker is the core module of the controller which
is called through User Interface. It receives a user’s com-
mands, gets related topology data from Topology database,
and compose the detail structure of INT header to complete
the user’s request. The composed INT header is passed to the
INT Header Manager.

INT Header Manager manages the INT Headers which is
generated from users’ requests. It holds the newest set of INT
headers, and updates the header which is modified by the INT
Header Maker. INT Header Manager also send the request to
insert the INT header to the edge switch with the target flow
information.

D. Data Analyzer

Data Analyzer received the message carrying the telemetry
data from INT-enabled switches. It extracts telemetry informa-
tion from the messages and accumulate them for later analysis
and status monitoring. Figure 4 shows the structure inside
Data Analyzer. This figure depicts the Data Analyzer as a
standalone server, but it could be deployed to any server, such
as inside of edge node with controller. Data Analyzer consists
of four modules Moloch, analysis program, and two databases
that are Elasticsearch and TelemetryDB.

Moloch is used to capture the telemetry messages and
analysis them. MolochCapture takes the monitoring the spe-
cific network interfaces always, and captures packets arrived
at those network interfaces. It extracts and stores the raw
telemetry data from the packets, and uses Elasticsearch to
index them internally. Moloch also provides a GUI interface,
MolochViewer, that browses the collected packets, and API to
analysis captured data.

Analysis program is implemented using Python and handles
the part of extracting Telemetry data from INT header, which
is difficult to analysis using only the Moloch API. Analysis
program gets the file path of the saved packets through Eal-
sticsearch using Moloch API, then parse and extract telemetry
information. It also accesses Controller to find the user who
request the telemetry information. The user information is
difficult to carry on the INT header because of the size
limitation and difficulty of the unique identity. Our program
determines the user who requested the INT action from the
information of both controller and telemetry data.

©Copyright IEICE - APNOMS 2021 260

IV. EXPERIMENTS AND EVALUATION

We evaluated the overhead and effectiveness of proposed
selective INT mechanism. Prototype system of the proposed
mechanism is implemented BMv2 P4 model switch, so the
shown result is useful to estimate the tendency of the overhead
which increase with the number of switches respond to the
telemetry request. We also show the power of proposed pin-
point telemetry through the experiments of investigating the
unknown topology of the network and changing the telemetry
rules in flexible and dynamic.

We prepared a Mininet environment with 24 switches. On
this environment, we compared the hop latency measured in
each switch by changing the number of target switches to 4,
6, 8, 12 and 24. Figure 5 shows the result of measurement.
This result shows that required processing time decreases with
selectively reducing the number of switches.

Fig. 5: Packet Transfer Latency

Next, we show an example of network administration task of
trouble shooting. In this example, administrator first monitors
the hop latency several surrounding switches. Latency be-
tween all switches on the route to several absolutely specified
switches are monitored and displayed (Figure 6 left). Some
of the Switches are depicted with the colored icons in green
and red. These colors are showing the measured hop latency
relatively small (green) or large (red). Switches colored in
white means out of the target of the telemetry action. From
this view, only one switch with ID S8 is marked as switch
with the heavy hop latency. Then user change the target of
the telemetry only the switch S8. View of the monitoring is
quickly update to the new image (Figure 6 rigth).

V. DISCUSSION

The result of section IV shows that proposed pin-point INT
can make the number of INT target switch to a minimum and
reduce the overhead of the telemetry. Our proposed system can
specify the target switches of INT action using both of relative
distance from Controller and absolute switch ID. Using the
relative distance, our examples shows that the connectivity and
status of the network is easily determined only using the in-
band telemetry monitoring. Our proposed system will enable
users to specify the telemetry target switches flexibly with the
combination of the relative distance and absolute IDs. The
prototype monitoring system supports generation of the INT
header arranged for the users’ request, manages the telemetry

Fig. 6: Monitor View (original and updated)

requests, gather and analysis the telemetry data, and view the
graphical image of the topology and status. This will help to
reduce the cost on monitoring complicated networks.

The limitation of the proposed system is the range of the
switches which are the targets in-band telemetry. Our proposed
mechanism specifies the INT target switches using Ingress
offset and Point bitmap. It enables to collect the telemetry up
to a series of 24 switches starting from the 255 hops far from
the edge switch. This means maximum degree of the network
that our system can monitor is 279. We consider the limitation
of the network size is practically enough for current network
environment. The limitation of a series of 24 switches can be
relaxed with some brief extension of the proposed mechanism.
One approach is to use the multiple INT headers with the
different Ingress offset specifying the multple starting points.
Another approach is modifying the lengths of the bit patterns
of Ingress and Point. In both way, total size of the telemetry
header is basically limited. With considering this limitation, we
consider a series of 24 switches are also practically enough.

VI. CONCLUSION

In this paper, we proposed a flexible in-band network
telemetry (INT) system that enables pin-point designation of
telemetry target switches. Each switch supporting our INT
mechanism determines whether it executes the telemetry action
or not with just processing the telemetry header in each packet.
We implemented the prototype system using P4 BMv2 model
switch on Mininet and evaluate the effectiveness of our system
through some experiments. The prototype system manages
users’ INT requests, and the result of monitoring graphically.
Our proposed system enables administrators and operators to
monitor the network status easily and precisely.

REFERENCES

[1] S. Tang, D. Li, B. Niu, J. Peng, and Z. Zhu, “Sel-INT: A Runtime-
Programmable Selective In-Band Network Telemetry System,” IEEE
Transactions on Network and Service Management, vol. 17, no. 2, pp.
708–721, 2020.

[2] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and
M. Mitzenmacher, “PINT: Probabilistic In-Band Network Telemetry,” in
Proceedings of SIGCOMM ’20, 2020, p. 662 ‒ 680. [Online]. Available:
https://doi.org/10.1145/3387514.3405894

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87 ‒ 95, Jul. 2014. [Online].
Available: https://doi.org/10.1145/2656877.2656890

©Copyright IEICE - APNOMS 2021 261

