Machine Learning-based Cache Optimization on
MEC Platform

Waleed Akbar, Afag Muhammad, Javier Jose Diaz Rivera, Wang-Cheol Song *
Department of Computer Engineering, Jeju National University, Jeju-si, South Korea
waleedwali786 @ gmail.com, philo@jejunu.ac.kr * Corresponding Author

Abstract—The amount of data generation is exponentially
increasing over the past decade due to the widespread use of
multimedia applications and social media platforms. Advanced
real-time applications such as virtual reality, augmented reality,
automated vehicles, smart homes, and intelligent traffic control
systems have increased the demand for low latency. Many of
these applications are delay-sensitive and put enormous stress
on the core network to respond in real-time. CDN (Content
Delivery Network) brings storage service to end-users proximity
to provide low latency, high data throughput, and low traffic
pressure to handle the problems mentioned above. Due to the
limited storage capacity of the edge, only in-demand content
should cache. Therefore, to optimally utilized the cache space, an
efficient content caching and replacement policy is needed. To this
end, in this paper, we propose an optimal content replacement
algorithm. In this algorithm, a video request pattern is first
generated based on a publicly available dataset. After that, a
machine learning model is trained on cache logs data. As a result,
the predicted video is deleted from the edge to make space for
new videos. A real-time testbed is built on KOREN to check the
performance of our model. The results based on MAE, MSE, and
R-2 show that our model performs well in real-time scenarios.

I. INTRODUCTION

The current era of Internet of Things (IoT) devices such as
mobile devices, sensor devices, and wearable devices has ex-
ponentially increased the volume, velocity, and variety of data.
According to Seagate, in the ‘Digitization of World’ white
paper, the generation of big data will be increased from 45
zettabytes (2019) to 175 zettabytes (2025) [1]. Cisco reported
that by the end of 2023, the number of Internet-connected
devices would be three times the total earth population [2].
Cisco also published in ‘cisco visual networking index’, the
total traffic generated by social media platform is the second
largest contributor in mobile data traffic, with over 15% of
traffic load [3]. The emergence of real-time applications, such
as augmented reality and virtual reality, also added to the
complexity and speed of data generation. This tremendous
increase in speed of data generation imposed a high traffic
load on the backhaul link and core network. Some studies [4],
[5], [6] also mentioned the traffic increase due to the duplicate
downloading of popular content.

The latest advancements have guided us to new technologies
such as Mobile Edge Computing (MEC), Information-Centric
Network (ICN), and Content Delivery Network (CDN). The
MEC architecture receives considerable attention from re-
searchers and industrial experts, and therefore, it is stan-
dardized by (European Telecommunications Standards Insti-

©Copyright IEICE - APNOMS 2021

tute) ETSI [7]. MEC architecture provides caching capacity,
compute service, and big data analytics in the proximity of
end-user. Utilizing the MEC caching capabilities, the popular
content can be stored on the cache to reduce the backhaul
traffic congestion and latency.

MEC caching has been widely considered, and many
techniques have been proposed to take advantage of this
emerging technology. MEC has been implemented in many
technologies such as V2V communication [8], IoT systems
[9], [10], smart homes. Many researcher predicted that MEC
caching has a major role in 5G networks [11], [12], [13],
[14]. The technologies bring many benefits, but deployment
remains a big challenge. [15], [16], [17], [18] proposed an
efficient deep learning model for cache optimization. All these
models are trained on a publicly available dataset, and the
results are measured on the test dataset. The authors in [19]
proposed a reinforcement learning model to understand user
behavior based on historical data. The simulation is done on
the MovieLens dataset to evaluate the results. [20] proposed
a knapsack (dynamic programming algorithm) to find the
optimal replacement policy. The simulation using MATLAB
is done to evaluate the proposed algorithm. [18] used a
hybrid approach of deep learning and collaborative filtering.
The proposed model is evaluated on a test dataset, and no
simulation work is done. [21] consider cache optimization
problem as a multi-objective optimization problem; a GA
(Genetic Algorithm) with ant colony optimization is used
to solve this problem. The proposed model is numerically
evaluated.

II. SYSTEM MODEL
A. Problem Statement

By now, many research works have been published in
MEC cache optimization [15], [16], [18], [19], [20], [22] and
content replacement policy optimization [17], [21], [23]. Many
popular papers proposed a cache optimization model based
on machine learning [17], deep learning [15], reinforcement
learning [19], dynamic programming [22], [20] and traditional
weighted LRU [23] (Least Recently Used) models. According
to the best of our knowledge, all published papers either
simulated the testbed environment [15], [16], [17], [19], [20]
or evaluates their model numerically [18], [21]. A simulated
environment has many constraints and does not represent the
real network environment. Without testing these models in
a physical testbed, it is impossible to tell how the model

250

ML Module

YouTub
Server

el Training
Data Center Module

Video Request Logs
Video Deletion Logs |

v

Control System |‘

o com o) i/ P H
o = - - = - — i
& Edge Server id End Node

Generator

Fig. 1. System overview and components

will perform in real-world scenarios. Therefore, we have
proposed a novel testbed environment to test and evaluate the
cache optimization model. Our testbed environment is built
on KOREN [24], and it consists of a datacenter node, edge
node, and end/user device. Initially, we construct a cache usage
dataset and train our DNN (Deep Neural Network) model. We
predicted content to be deleted from a cache and evaluate the
results on MAE, MSE, and R-2.

B. Architecture Overview

Figure 1 shows the overview of the whole system. The
system consists of three main components, data center (DC),
edge server, and end node. The data center stores all the
available contents and provide content to edge once requested.
The storage capacity of a data center is assumed to be
unlimited. The edge server has limited resources, and it only
caches popular content. It provides the content to the user from
the cache if available; otherwise, it requests DC for content.
The user generated the content request and received the
content. Each component has sub-modules. The intelligence
cache control system (ICCS) is deployed at the data center
to monitor the working of the overall system. The ICCS is
consists of six modules. In DC, the request handler module is
responsible for receiving the video content request from the
edge server. The data center module stores information about
the requested video and deleted video contents. The machine
learning (ML) module first finds the requested pattern and then
predicts the content deleted from the cache. Cache handlers
provide requested content to the edge server. The edge server
is consisting of three modules. Request generator initiates
content requests towards the data center. The notification
generator initiates notification for the data center at cache max
state. Local storage to cache the content temporarily. Edge
server has limited storage space to cache popular content only.

©Copyright IEICE - APNOMS 2021

Layer (type) output Shape Paran # Connected to

user_input (InputLayer) [(None, 1)1]

rating_input (InputLayer) [(None, 1)]]

user_embedding (Embedding) (None, 1, 56) 2650 user_input[0][6]

rating_embedding (Embedding) (None, 1, 50@) 21050 rating_input[e][e]

FlattenUsers (Flatten) (None, 58)] user_embedding[@][6]

FlattenRating (Flatten) (None, 58) rating embedding[6][6]

dropout_29 (Dropout) (None, 5@) FlattenUsers[e][0]

dropout 36 (Dropout) (None, 58) FlattenRating[0](6]

Simalarity-Dot-Product (Dot) (None, 1) dropout_29[0][0]

dropout_3e[e][e]

dense_26 (Dense) (None, 96) 192 Simalarity-Dot-Product[@][0]

dropout_31 (Dropout) (None, 96) ® dense_26[0][0]

dense 27 (Dense) (None, 1) 97 dropout_31[0][0]

Fig. 2. DNN Model - Layer and Parameters Configuration

C. System Flow

There are two basic flows, control flow and data flow. Data
flows consist of request and response messages between the
data center, edge server, and end node. Two system entities
generate the request messages: video requests by the end
device and the edge node. Likewise, two system entities
generate the response messages: video requests by the end
device and the data center. Control signals are responsible
for overall system management, such as notification messages,
notification responses, and other messages.

D. Machine Learning Model

We use DNN (Deep Neural Network) machine learning
model; the model configuration is depicted in figure 2. In pre-
possessing, after sorting the dataset with time, the timestamp
and video title is removed from the dataset. The video genre
feature is encoded into a unique float id from the text. There
are no NULL values, and Nan is found in the dataset. User Id,
genre, and rating are given as input to the model, and video
Id is predicted output. As shown in the figure, the user vector
and rating vector are also used as embedding layers. A three
50% dropout layers are added. A dense layer with 96 neurons
is added, and the output layer with one neuron is added. The
RELU function is used as activation in all layers. The batch
size for model training is two.

E. Mathematical Formulation

Let there are N number of videos available in data center,
represented as equation 1. Each video v, is belong to a genre G
and their are K generics, depicted in equation 2. let T be set of
time intervals represented in equation 3 and J is total number
of time intervals. S. represents the size of cache storage.
Equation 4 represents the binary decision variable of video
availability in a cache. The size of video v,, is represented as

S, .

V ={vy,v9,03,...,0n} N = Total videos (1)
G={91,92,93,---, 9K} K = Total generics (2)
T = {t1,t2,t3,...,t5} J = Total time slots (3)

251

TABLE I

DATA CENTER DESCRIPTION

S. No. Attributes Description
1 User count 104
2 Video count 1095
3 Rating count 10,517
4 Rating range 1 (worse) to 5 (best)
5 Video genre Interview, Education, Sports, Films,
g Animation, NEWS, Music, Travel
1, if video (v,,) is available in cache
Xvn == . (4)
0, otherwise
D [onlt) * X,], teT 5)
v, €V
£vn,c¢:7 Un S V (6)
»Evn,,dca Up € |4 (7)
>, (t), teT (8)
v €V
D[S, (1) * X0,], teT)
v, €V

Equation 5 represents available videos on cache at time
t. Latency to fetch a video from cache and data center is
represented by equations 6 and 7, respectively. The number of
received video requests is represented by equation 8. Cache
memory utilization a time t is represented in equation 9.
Equation 10 represents the objective function. The objective
is to minimize the total download latency.

min Z [(Xo, * Lo cc+ (1= Xo,) % Lo, de]
v, €V

(10)

III. TRAINING AND EXPERIMENTAL SETUP
A. Dataset

Firstly, we downloaded 1095 videos from YouTube; these
video belongs from eight different genres, listed in table L
Secondly, the hidden user request pattern is captured from the
MovieLens dataset [25]. Lastly, We generate user requests and
collect cache utilization logs with the timestamp. Whenever
there is a new update in the cache, the deleted video log is
captured and stored in the central log files. The dataset detail
is mentioned in table I. It takes 19 hours to complete this
experiment.

B. Test-bed Setup

Our tested environment is built on KOREN (Korea Advance
Research Network). A KOREN provides a testbed for research
and development purposes. Our experiments are conducted on
physical PCs deployed in different cities. Datacenter PC is
placed in Gwangju city, and the other two PCs are placed in
Jeju city. The edge server is deployed in JNU (Jeju National
University) network operation center, and the end node is
deployed in our lab. The PC specifications are mentioned in
table III.

©Copyright IEICE - APNOMS 2021

TABLE II

DELETED VIDEOS LOG DESCRIPTION
S. No. Attributes Description
1 User Id User that requested the video
2 Video Id Video to be requested
3 Rating Rating attached with video (1 to 5)
4 Genre Attached with video
5 Time stamp Time stamp of deleted video

TABLE III
NODES SPECIFICATIONS
Specifications DC Node [Edge Server [End Node
oS Ubuntu 18.04 LTS
Environment Conda Virtual Environment
Libraries Pandas, NumPy, Threading libraries
NIC 10 GB/sec
CPU Cores 40 4 16
RAM 132 GB 16 GB 16 GB
HDD 1 TB 200 GB 500 GB
Network Link 100 GB link Over the In-
ternet

IV. RESULTS AND DISCUSSION

Figure 3 show the training and validation loss over the
50 epochs. The training loss decreases with the increase in
epochs; after 30 epochs, the training loss becomes stable. The
validation loss continues to be stable after few epochs. Both
the validation and training loss are almost the same and less
than 0.05. These results show that our model neither over-fit
nor under-fit. The figure 4 shows the comparison between
predicted video ids and true values. In the figure, most of the
predictions are near to higher video ids because the higher
video ids are popular videos. Table IV show the MSE (Mean
Square Error), MAE (Mean Absolute Error), and R2 error
values of our model. These metrics show the error between
true video ids and predicted video ids.

DNN Model Loss

®- loss
#— validation loss

a ®ee,
.00”0u‘omuu.:aﬁ.gea“ouuuuoomm

0.00 98eeeeesTngetnge

0 10 20 30 40 50

Fig. 3. DNN Model - Training and Validation Loss

TABLE IV
ERROR METRIC RESULTS
S. No. Metric Name Value
1 MSE 9.817
2 MAE 0.839
3 R2 0.821

252

50 | =—— frue
predicted

a 100 200 300 400 500

Fig. 4. Video Id comparison - True and Predicted

V. CONCLUSION

In this paper, we proposed a cache optimization model based
on a deep neural network. Firstly, we analyze the publicly
available dataset (Movie-Lens) to extract the user request
hidden pattern. The user request pattern is used to generate
the request for our experiment, and a monitoring system is
deployed to captured the cache utilization and user request
log. Later, their logs are used to train the DNN model and
model predict the video id to remove from the cache. This will
optimize the cache memory utilization, and our result suggests
that the proposed model has a minimal error. In the end, we
can store the most popular content on the cache.

ACKNOWLEDGMENT

This research was one of KOREN projects supported by
National Information Society Agency (No.1711125875)

This research was also supported by Basic Science Re-
search Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (NRF-
2016R1D1A1B01016322).

REFERENCES

[1] SeaGate. SeaGate Blog-Data Age by 2025, 2021 (accessed March 9,
2021). https://www.seagate.com/as/en/our-story/data-age-2025/.

[2] CISCO. Cisco Predicts More IP Traffic in the Next Five
Years Than in the History of the Internet, 2021 (accessed
March 9, 2021). https://newsroom.cisco.com/press-release-
content?type=webcontent&articleld=1955935.

[3] Cisco Visual Networking Index. Forecast and methodology, 2016-2021.
White paper, Cisco public, 6, 2017.

[4] Li Qiu and Guohong Cao. Popularity-aware caching increases the
capacity of wireless networks. IEEE Transactions on Mobile Computing,
19(1):173-187, 2019.

[5] Yipeng Zhou, Liang Chen, Chunfeng Yang, and Dah Ming Chiu.
Video popularity dynamics and its implication for replication. [EEE
transactions on multimedia, 17(8):1273-1285, 2015.

[6] Jeffrey Erman, Alexandre Gerber, Mohammad Hajiaghayi, Dan Pei,
Subhabrata Sen, and Oliver Spatscheck. To cache or not to cache: The
3g case. IEEE Internet Computing, 15(2):27-34, 2011.

[71 Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie
Young. Mobile edge computing—a key technology towards 5g. ETSI
white paper, 11(11):1-16, 2015.

[8] Muhammad Saqib, Asif Mehmood, Adeel Rafiq, Afag Muhammad,
and Wang-Cheol Song. Distributed sdn based network state aware
architecture for flying ad-hoc network. 1In 2020 2Ist Asia-Pacific
Network Operations and Management Symposium (APNOMS), pages
25-30. IEEE, 2020.

©Copyright IEICE - APNOMS 2021

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

253

Asif Mehmood, Faisal Mehmood, and Wang-Cheol Song. Cloud based
e-prescription management system for healthcare services using iot
devices. In 2019 International Conference on Information and Com-
munication Technology Convergence (ICTC), pages 1380-1386. IEEE,
2019.

Shabir Ahmad, Faisal Mehmood, Asif Mehmood, and DoHyeun Kim.
Design and implementation of decoupled iot application store: A novel
prototype for virtual objects sharing and discovery. Electronics, 8(3):285,
2019.

Asif Mehmood, Talha Ahmed Khan, Javier Diaz Rivera, and SONG
Wang-Cheol. An intent-based mechanism to create a network slice using
contracts. abc, pages 180-181, 2018.

Khizar Abbas, Muhammad Afaq, Talha Ahmed Khan, Adeel Rafiq,
Javed Igbal, Ihtesham Ul Islam, and Wang-Cheol Song. An efficient
sdn-based lte-wifi spectrum aggregation system for heterogeneous 5g
networks. Transactions on Emerging Telecommunications Technologies,
page 3943, 2020.

Khizar Abbas, Muhammad Afaq, Talha Ahmed Khan, Adeel Rafiq, and
‘Wang-Cheol Song. Slicing the core network and radio access network
domains through intent-based networking for 5g networks. Electronics,
9(10):1710, 2020.

Khizar Abbas, Talha Ahmed Khan, Muhammad Afaq, and Wang-Cheol
Song. Network slice lifecycle management for 5g mobile networks: An
intent-based networking approach. IEEE Access, 2021.

Laha Ale, Ning Zhang, Huici Wu, Dajiang Chen, and Tao Han. Online
proactive caching in mobile edge computing using bidirectional deep
recurrent neural network. [EEE Internet of Things Journal, 6(3):5520—
5530, 2019.

Yayuan Tang, Kehua Guo, Jianhua Ma, Yutong Shen, and Tao Chi. A
smart caching mechanism for mobile multimedia in information centric
networking with edge computing. Future Generation Computer Systems,
91:590-600, 2019.

Jie Liang, Dali Zhu, Haitao Liu, Heng Ping, Ting Li, Hangsheng Zhang,
Liru Geng, and Yinlong Liu. Multi-head attention based popularity
prediction caching in social content-centric networking with mobile edge
computing. /[EEE Communications Letters, 2020.

Yu Chen, Yong Liu, Jingya Zhao, and Qinghua Zhu. Mobile edge cache
strategy based on neural collaborative filtering. IEEE Access, 8:18475—
18482, 2020.

Wei Jiang, Gang Feng, Shuang Qin, and Yijing Liu. Multi-agent
reinforcement learning based cooperative content caching for mobile
edge networks. IEEE Access, 7:61856-61867, 2019.

Xing Chen, Lijun He, Shang Xu, Shibo Hu, Qingzhou Li, and Guizhong
Liu. Hit ratio driven mobile edge caching scheme for video on demand
services. In 2019 IEEE International Conference on Multimedia and
Expo (ICME), pages 1702-1707. IEEE, 2019.

Danyue Wang, Xingshuo An, Xianwei Zhou, and Xing Lii. Data cache
optimization model based on cyclic genetic ant colony algorithm in edge
computing environment. International Journal of Distributed Sensor
Networks, 15(8):1550147719867864, 2019.

Sanshan Sun, Wei Jiang, Gang Feng, Shuang Qin, and Ye Yuan.
Cooperative caching with content popularity prediction for mobile edge
caching. Tehnicki vjesnik, 26(2):503-509, 2019.

Chunlin Li, Mingyang Song, Shaofeng Du, Xiaohai Wang, Min Zhang,
and Youlong Luo. Adaptive priority-based cache replacement and
prediction-based cache prefetching in edge computing environment.
Journal of Network and Computer Applications, 165:102715, 2020.
Korea MoS. Korea Advance Research Network, 2019 (accessed March
9, 2021). http://www.koren.kr/eng/Intro/introO1.html.

F Maxwell Harper and Joseph A Konstan. The movielens datasets:
History and context. Acm transactions on interactive intelligent systems
(tiis), 5(4):1-19, 2015.

