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Abstract: N -continuous OFDM is a precoding method for
sidelobe suppression of orthogonal frequency division multi-
plexing (OFDM) signals and is to seamlessly connect OFDM
symbols up to the high order derivative for sidelobe sup-
pression, which is suitable for suppressing out-of-band radi-
ation. However, it degrade the error rate severely as increas-
ing the continuous derivative order. Orthogonal precoding of
N -continuous OFDM has both a sidelobe suppression per-
formance and an ideal error rate; however, it requires a very
large computational complexity for precoding and decoding.
This paper proposes a matrix decomposition of the large-sized
matrix in the orthogonal precoding of N -continuous OFDM
to reduce the computational complexity. Numerical experi-
ments show that the proposed method can drastically reduce
the computational complexity.
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1. Introduction
The advantages of fast data transmission and robust-

ness against multipath fading have led to orthogonal fre-
quency division multiplexing (OFDM) being adopted in sev-
eral telecommunications technologies. One of the drawbacks
associated with the design of OFDM transmitters is that high
out-of-band radiation is generated by the high sidelobes of the
OFDM signal. A critical issue concerning OFDM-based cog-
nitive radio systems is that unwanted in-band and out-of-band
radiation interferes with the adjacent bands. Various methods
of sidelobe suppression have been proposed [1]–[4].

N -continuous OFDM [1] is a precoding method to seam-
lessly connect OFDM symbols up to the high order derivative
for sidelobe suppression, which is suitable for suppressing
out-of-band radiation. However, the error rate performance
is inevitably degraded due to an irreversible distortion intro-
duced to the transmitted symbol by its precoding and it be-
comes larger as increasing the continuous derivative order.
Orthogonal precoding of N -continuous OFDM was ini-

tially given in [2]. In orthogonal precoding, it can achieve
both the sidelobe suppression performance of N -continuous
OFDM and the ideal error rate. On the other hand, the data
rate loss occurs and the computational complexity for precod-
ing and decoding is very huge due to the large-sized matrix.
Then, Ref.[3] has presented an improved orthogonal precod-
ing that the data rate loss can be limited to half compared with
the means in [2]; however, the disadvantage of huge compu-
tational complexity is still left.
To reduce the computational complexity, this paper pro-

poses a matrix decomposition of the large-sized matrix in
the orthogonal precoding of N -continuous OFDM. Numer-

ical experiments show that the proposed method can drasti-
cally reduce the computational complexity.

2. Orthogonal Precoding of N -continuous
OFDM

In this paper, the OFDM signal is written as

s(t) =

∞∑
i=0

si(t− iT ), (1)

where T = Ts+Tg , Ts is the OFDM symbol duration and Tg

is the guard interval length. The i-th OFDM symbol si(t) is
written as

si(t) =
∑
k∈K

d̄k,ie
j2π k

Ts
t, (2)

where d̄k,i ∈ C is a precoded symbol transmitted in the k-th
subcarrier of the OFDM symbol, K = {k0, · · · , kK−1} is the
set of the subcarrier indices and K is the number of subcar-
riers. To smoothly connect the consecutive OFDM symbols
si(t), si−1(t) and their first N(� K) derivatives continuous
for sidelobe suppression, the scheme ofN -continuous OFDM
[1] presents the constraints such as

dn

dtn
si(t)

∣∣∣∣
t=−Tg

=
dn

dtn
si−1(t)

∣∣∣∣
t=Ts

. (3)

For the OFDM symbol (2), the constraints (3) can be cast in
matrix form that such as

AΦd̄i = Ad̄i−1, (4)

where A is an (N + 1) × K matrix with the elements
[A]m,n = (kn)

m−1, Φ = diag (ejφk0 , ejφk1 , . . . , ejφkK−1)
is aK ×K diagonal matrix with φ = −2πTg/Ts, theK × 1
vector d̄i = [d̄i,k0 , d̄i,k1 , · · · , d̄i,kK−1 ]

T ∈ C
K is the result

of precoding theD× 1 vector di = [di,0, · · · , di,D−1]
T con-

taining D (≤ K) information symbols in some finite symbol
constellation. From ΦΦH = IK , the constraint (4) can be
rewritten as

Bd̄i = BΦH d̄i−1, (5)

where B = AΦ.
Ref.[3] has proposed the orthogonal precoding with D =

K − (N + 1) that determines the solution of (5) as

d̄i = V[D]di +V[N+1]V
H
[N+1]Φ

H d̄i−1, (6)
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where

V[N+1] = V

[
IN+1

OD×(N+1)

]
= [v0 v1 . . . vN ], (7)

V[D] = V

[
O(N+1)×D

ID

]
= [vN+1 vN+2 . . . vK−1],

(8)

are theK × (N + 1) andK ×D matrices respectively,V =
[V[N+1] V[D]] = [v0 . . . vN vN+1 . . . vK−1] is obtained
from the singular-value decomposition (SVD) that factorizes
B as

B = UΣVH , (9)

U is an (N+1)×(N+1) unitary matrix, andΣ is a diagonal
(N + 1) × K matrix containing the singular values of B in
non-increasing order along its diagonal.
For the receiver, the decoding that inverts the transmitter

precoding (6) are presented in [3] as

ri = VH
[D]r̃i, (10)

where r̃i is the i-th received OFDM symbol after the chan-
nel equalization, and (10) provides ri = di in the noise-
less condition since V is unitary (VH

[D]V[D] = ID and
VH

[D]V[N+1] = OK×(N+1)).
The precoding (6) and the decoding (10) require K(K +

N+2) andK(K−N−1)multiplications, respectively. These
are very huge and thus must be reduced.

3. Proposed System and Analysis
This paper proposes a matrix decomposition of theK×D

matrix V[D] to reduce the computational complexity in the
orthogonal precoding [3]. As a general method to the compu-
tational complexity reduction in engineering, SVD has been
used to obtain the decomposition of small-sized matrices as-
suming that the large-sized matrix is rank deficient. On
the other hand, the SVD to V[D] does not lead to reduc-
tion of the computational complexity because rank{V[D]} =
rank{VH

[D]V[D]} = rank{ID} is full. ThenV as the body of
V[D] in (8) is unitary whose rank is surely full, which means
that the SVD to V is also not effective for the computational
complexity reduction at all.
Therefore, we consider the SVD to V − IK . The SVD of

V − IK is written as

V − IK = XYZH , (11)

where X = [x0 x1 . . . xK−1] and Z = [z0 z1 . . . zK−1],
are K ×K unitary matrices, Y is a diagonal K ×K matrix
containing the singular values of V − IK in non-increasing
order along its diagonal, expressed as

Y = diag (σ0, σ1, · · · , σK−1) , (12)

and σ0 ≥ σ1 ≥ · · · ≥ σK−1 are the singular values of V −
IK .

From the Eckart–Young–Mirsky theorem, the matrixV −
IK is approximated by replacing the singular values by zero
except for the first L largest values, i.e.,

V − IK � XỸZH , (13)

where Ỹ is aK ×K diagonal matrix expressed as

Ỹ = diag (σ0, σ1, · · · , σL−1, 0, · · · , 0) . (14)

Then we can obtain the decomposition ofV such as

V � IK +XỸZH = IK +QRH , (15)

where Q is the K × L matrix that consists of the first L
columns of the matrixXỸ, expressed as

Q = [σ0x0 σ1x1 . . . σL−1xL−1], (16)

andR is theK×Lmatrix that consists of the first L columns
of the matrix Z, expressed as

R = [z0 z1 . . . zL−1] = [z′0 z
′
1 . . . z′K−1]

H . (17)

Substituting (15) into (6), theK×D matrixV[D] also can
be decomposed easily and we finally rewrite the precoding
(10) and the decoding (15):

d̄i �
[
O(N+1)×D

ID

]
di +QSdi

+V[N+1]V
H
[N+1]Φ

H d̄i−1, (18)

ri �
[
OD×(N+1) ID

]
r̃i + SHQH r̃i, (19)

where S is the L×D matrix composed of the last D = K −
(N + 1) columns ofRH , expressed as

S = [z′N+1 z
′
N+2 . . . z′K−1]. (20)

We analyzedY expressing the singular valuesV− IK un-
der the experimental conditions in [2] and [3]. Figs. 1(a) and
(b) show the all 45 and the first 100 diagonal elements of Y,
that is, the singular values σ0, · · · , σ44 and σ0, · · · , σ99, re-
spectively. The results show that almost all diagonal elements
can be considered as zeros, except for the first few values.
The number of non-zero diagonal elements L can be found as
2(N + 1) from these results.
In the proposed system, the precoding (18) and the decod-

ing (19) require L(K+D)+2(N +1)K = 2(N +1)(3K−
N − 1) and L(K +D) = 2(N + 1)(2K −N − 1) multipli-
cations if L = 2(N +1), compared withK(K +N +2) and
K(K−N−1)multiplications of the conventional orthogonal
precoding of N -continuous OFDM, respectively.

4. Numerical Experiments
To evaluate the performance of the proposed method, we

conducted numerical experiments with L = 2(N + 1) under
the same conditions as Fig. 1.
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(a)N = 4 ,K = 45 (K = {−32, · · · , 6} ∪ {26, · · · , 31}),
Ts = 1/15 ms, Tg = 1/8Ts and 16-QAM modulation.

(b)N = 7 ,K = 600 (K = {−500, · · · ,−201} ∪ {201, · · · , 500}),
Ts = 1/15 ms, Tg = 9Ts/128 and QPSK modulation.

Figure 1. Singular values inV− IK ; the experimental condi-
tions of Figs. 1(a) and 1(b) are based on those of Fig. 3
in [3] and Fig. 3(b) in [2], respectively.

We firstly verified that the proposed method does not de-
grade the performance of the conventional orthogonal precod-
ing of N -continuous OFDM. Figure 2 shows the power spec-
tral densities of the original OFDM, the conventional orthog-
onal precoding of N -continuous OFDM and the proposed
method. Figure 3 shows the bit error rates in an additive white
Gaussian noise (AWGN) channel. These show that the per-
formance of the proposed method is identical to that of the
conventional orthogonal precoding of N -continuous OFDM.

Next, we evaluated the computational complexity of the
proposed method compared with the conventional orthogo-
nal precoding of N -continuous OFDM. Table 1 shows the
computational complexities in multiplications of precoding
and decoding. The results show that the proposed method
can reduce the computational complexity and the reduction
becomes more drastic as increasing K, compared with the
conventional orthogonal precoding. For example, Table 1(b)
shows the proposed method requires only 7.9% in the pre-
coding and 5.4% in the decoding, compared with the conven-
tional orthogonal precoding.

(a) the experimental conditions of Fig. 1(a)

(b) the experimental conditions of Fig. 1(b)

Figure 2. Power spectral density of the original OFDM,
conventional orthogonal precoding of N -continuous
OFDM, and proposed method.

Table 1. Comparison of computational complexity in multi-
plications

(a) the experimental conditions of Fig. 1(a)

Precoding Decoding
Conventional [3] 2, 295 (100%) 1, 800 (100%)
Proposed 1, 345 (57%) 850 (47%)
(Example: K = 45, N = 4, L = 10)

(b) the experimental conditions of Fig. 1(b)

Precoding Decoding
Conventional [3] 365, 400 (100%) 355, 200 (100%)
Proposed 28, 672 (7.9%) 19, 072 (5.4%)

(Example: K = 600, N = 7, L = 16)

5. Conclusions
This paper has proposed a matrix decomposition of

the large-sized matrix in the orthogonal precoding of N -
continuous OFDM to reduce the computational complexity.
Numerical experiments showed that the proposed method
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(a) the experimental conditions of Fig. 1(a)
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(b) the experimental conditions of Fig. 1(b)
Figure 3. Bit error rates in AWGN channel.

does not degrade the performances and can drastically reduce
the computational complexity for the precoding, the decoding
e.g., 7.9% and 5.4%, respectively, compared with the conven-
tional orthogonal precoding of N -continuous OFDM.
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