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Abstract— Recently, with rising attention and widespread 

awareness of 5G technology, the rapid growth of mobile devices 

and various network infrastructures and services emerge. As 

means to provide responsive services and a guaranteed QoS 

level to individual demands while maintaining resource 

constraints, it is necessary to consider various factors affecting 

network service performance and dynamic network 

provisioning. In this paper, a Reinforcement Learning-based 

routing algorithm is proposed, which uses the information 

related to link stability to make routing decisions, called 

Reinforcement learning-based Routing with Link Stability 

(RRLS). To evaluate this algorithm, we applied the RRLS 

algorithm on a dynamic network provisioning framework and 

compared it to the RRLS algorithm and Dijkstra's algorithm. 

The result shows that the proposed algorithm performed better 

than Dijkstra's algorithm and shows that the proposed 

approach is an appealing solution for dynamic network 

provisioning routing. 

Keywords— SDN, Network provisioning, Machine Learning, 

Reinforcement Learning,  Location-aware network,  QoS demand 

constraints, Link-stability. 

I. INTRODUCTION 

Recently, with the rapid development of network 

infrastructures and services and the increased demand for 

network QoS, dynamic network provisioning has been made 

available to users to assist network service providers in 

providing more flexible and personalized network services to 

their customers. However, because of the harmful effects of 

the Covid-19 pandemic, people are unable to leave their 

homes, increasing the pressure on customers to join their 

advanced networks, despite the fact that their network 

resources and infrastructure are limited. As a result, they must 

address the unique requirements contained in user requests. 

This fact has prompted the question of how to more 

efficiently leverage limited network resources to support 

personalized network services and respond to a variety of 

user-specific requests with varying constraints and a 

guarantee of QoS while also considering the locations and 

durations of a user request. To address this issue, network 

service providers have been looking for a framework that can 

make the best use of their available network resources while 

also accommodating as many specific requirements as 

possible.  

Additionally, Software-defined Networking (SDN) is 

well-known for its numerous benefits, including decoupling 

the network control block from the underlying routers, 

switching to a logically centralized controller, and 

programmability of the network. Apart from simplifying 

policy enforcement, network configuration, and evolution, 

this separation of the control and data planes enables dynamic 

control and management of packet forwarding and processing 

in switches, which is expected to simplify network 

management and improve network capacity utilization delay-

and-loss performance [1]. 

A Reinforcement Learning-based approach for routing 

decisions in the SDN environment is proposed in this paper, 

dubbed Reinforcement learning-based Routing with Link 

Stability (RRLS). The result demonstrates that the RRLS 

algorithm can discover, learn, and utilize potential routing 

routes efficiently, even when network traffic changes 

dynamically. 

II. RELATED WORK 

Recently, pathfinding in a location-aware network has 
been the subject of many studies in recent years. For example, 
a method of best pathfinding using Location-aware AODV 
(Ad-hoc On-demand Distance Vector) for MANET (Mobile 
Ad-hoc NETwork) is suggested in [2]. This paper used 
multiple parameters such as node-ID, timestamp, GPS, 
bandwidth, RTT, packet loss ratio, and others to modify an 
existing protocol called AODV based on location to find the 
best path among multi-path routing protocols for MANET. On 
the other hand, the authors in [3], [4] proposed online 
algorithms with an auxiliary graph for unicast and multicast 
requests, including a bandwidth constraint and maximized 
network throughput. However, these studies do not consider 
the location-specific information of user requests. For 
example, due to Covid-19, everyone can not go out; the 
universities want to organize online classes via video 
conference. 

Furthermore, there are many students with different 
location want to access class. As a result, they would require 
a high-quality network for this type of lecture. In this case, the 
requirements locations are needed to consideration by the 
network providers to configuring a network slice with 
guaranteed performance without network parameters. To 
address the issue above, papers[5]-[6] mentioned an SDN-
based architecture that addresses customers' requirements, 
including locations and QoS levels, and dynamically 
implements a suitable network service.  Following a user 
request, the proposed system will map the corresponding 
switches in network resources, construct the shortest paths 
between these devices, and ensure the required QoS level. 
Also, how to measure and calculate to have a correct route 
between selected switches, on the other hand, becomes a 
critical problem. To overcome this problem, .an approach to 
accepting customers' requests (Spatio-Temporal QoS 
requests), including position, use time, and QoS, is adopted by 
Huu-Duy et al. [7].  
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 Still, these studies have not examined how to troubleshoot 
problems that arise unexpectedly on the network, such as node 
congestions, damaged connection devices, broken devices, or 
natural disasters. The Internet itself is a complex network that 
is constantly changing its condition. Thus, when the 
congestion occurs, the network providers must quickly 
calculate and find alternate routes that impact the customer. 
Machine Learning (ML) methods are now becoming more 
commonly used in a variety of fields. Machine learning has 
been used to address the impasse issues in network operation 
and management [8]-[9], and RL is a technique that allows 
agents to constantly explore their environment without prior 
experience, become acquainted with the entire climate after 
many training cycles, and eventually make the best decision 
[10]. As a result, it is a good fit for dealing with network 
management issues. In this paper, an RRLS algorithm is 
proposed, which uses link-state information to identify, build 
and, make the routing decision. 

III. RL-BASED ROUTING WITH LINK STABILITY 

 The Q-routing is a variation of the Q-learning algorithm.  
Q-routing algorithm trains an agent to interact with the 
environment. Agents take action on network situations called 
states. First, the agent identifies an episode composed of steps 
to convert the Q-table composed of states and activities into 
an optimal state. Then, an action is chosen, the state is 
transformed, and the best policy is set to approximate the 
optimal Q-value via the best reward, according to steps 
outlined in this episode. Therefore, this Q-routing algorithm 
can be used to search for an optimal network. In this paper, we 
propose an optimal routing scheme considering link stability. 
In the next, we defined details on the RRLS agent, the RRLS 
algorithm. 
A. RRLS Agent 

In this paper, we propose a technique to search for the 

optimal paths based on reinforcement learning in 

consideration of link-state pieces of information. Switches 

configured in the SDN (Software-Defined Networking) data 

plane are represented as states, and these states are managed 

in the state space. The topology composed of this state space 

is transferred to the agent as a graph corresponding to the 

switch topology of the data plane. The adjacent switch of the 

corresponding switch corresponds to the adjoining state of the 

state. Action converts the current state into a state. Beyond 

the agent and the environment, there are three primary 

elements of an RL system: the reward, the policy, and the 

exploration with exploitation. 

• The Reward: The reward is used to the best route options 

based on calculates link stability using the three-

parameter collected from customers requirements, such 

as requirement bandwidth (𝑏𝑟𝑞 ), delay requests (𝑑𝑟𝑞), 

packet-loss requests ( 𝑙𝑟𝑞 ) and then expresses it as 

equation (1), and �̅�𝑟𝑞 , �̅�𝑟𝑞 , 𝑙�̅�𝑞  are the normalization 

value of bandwidth, delay, and packet loss, respectively. 

R = 𝜃1* �̅�𝑟𝑞 + 𝜃2* (1 − �̅�𝑟𝑞) + 𝜃3* (1 − 𝑙�̅�𝑞) (1) 

The reward is proportional to bandwidth requests, and 

the opposite is proportional to delay and packet-drop 

requirements. These parameters also are the metrics of 

link stability. It could be explained that the link stability 

metric is a positive in the link state [11]. The values 𝜃1, 

𝜃2  and, 𝜃3  ∈ [0, 1] values are parameters representing 

weights for the matrix for calculating the compensation. 

The weight is expressed as in equation (2). 

    𝜃1 + 𝜃2 + 𝜃3 = 1, 𝜃1, 𝜃2, 𝜃3∈[0, 1]  (2) 

In equation (1),  bandwidth, delays, and packet-loss rate 

requirements are normalized, respectively. Since each 

parameter is composed of different units in the agent's 

learning process, the Min-Max method normalizes each 

feature [12]. An example of normalization is shown in 

equation (3). 

  �̅�𝑖 =
𝑥𝑖 − min (𝑋)

max(𝑋)−min(𝑋)
 ,  𝑥𝑖 ∈ X  (3) 

Equation (3) is used to calculate each normalized value 

(requests of bandwidth, delay, and packet loss). In 

equation (3),  the collection of values used to normalize 

represents X, and �̅�𝑖 is the value normalized. 

• The Policy: In the Q-routing method, the policy is built 

to maximize the reward value. Therefore, the agent 

learns to avoid connection with high latency and drop 

rate as well as to prefer links with a large available 

bandwidth when selecting a route. By visiting all state-

action pairs, the agent estimates the optimum 𝑄𝑡+1(𝑆𝑡 , 

𝐴𝑡). Then updates the Q-value in the Q-table, which is 

used to find the best routes for a node pair. When the 

agent is in a state 𝑆𝑡 and conducts action 𝐴𝑡, the Q-value 

is considered a measure for the total estimated reward. 

The agent adjusts the Q-value using the learning rate, the 

reward, and the new state. It is expressed as in equation 

(4) for the Q-value. 

𝑄𝑡+1(𝑆𝑡, 𝐴𝑡) = 𝑄𝑡(𝑆𝑡, 𝐴𝑡) + 𝛼* 

                  [𝑅𝑡 + max
A

𝑄𝑡(𝑆𝑡+1, 𝐴𝑡) − 𝑄𝑡(𝑆𝑡 , 𝐴𝑡)] (4) 

The expression in square brackets in equation (5) 

represents the improved value, which is the change in the 

current estimate and the new estimate of the optimal 

Qt(St, At) for a state-action pair (St, At). The new Q-value 

(Qt+1) is based on the previous value Qt, which is affected 

by (St, At, Rt, St+1) and 𝛼. Rt denotes the reward at time t, 

and [0, 1] denotes the learning rate, which measures the 

relative importance of new information learned to the 

previously acquired information. When 𝛼 = 0 prevents 

the agent from learning from the most recent (St, At) pair, 

while 𝛼  = 1 accepts the agent to retain the gained 

information by considering the immediate reward Rt(St, 

At). The Q-learning approach is not only computationally 

but also memory efficient. However, if the state space 

and action space are massive, finding the optimal policy 

will take a long time and need supplementary data. 

• The exploration and exploitation method: The agent 

repeats the exploration to select the best-expected 

behavior to maximize the cumulative reward and the 

investigation to select other behaviors in the hope of 

obtaining a greater reward in the future. To overcome 

this trade-off dilemma between search and use, the agent 

uses ε-greedy exploitation and discovery method with ε

∈[0, 1], which proceeds with the probability of ε and 

searches with the probability of 1− ε during the learning. 

The behavior is defined using ε-greedy is given by 

Equation (5).   
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A = {
𝑚𝑖𝑛𝑄𝑡(𝑆𝑡  , 𝐴), 𝑖𝑓 <  𝜀

𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
   (5) 

The agent approximates the optimal Q-function across 

all pairs of behavior states. Finally, the Q-value 

approximated for the node pair is updated in the Q-table, 

saved, and the episode ends. This policy is adopted as the 

priority of the link with high available bandwidth, low 

link delay, and packet-loss ratio to minimize the Q-value. 

B. RRLS algorithm 
 The SRLS algorithm uses learning to determine the 
optimal paths between each pair of nodes in the data plane. 
The learning rate, the parameter, the number of episodes to 
learn, the source-destination nodes pairwise, and information 
about the connections between them are the algorithm's input 
parameters. The output contains a list of paths linking the 
devices in the highest-rewarding node pairs. In addition, the 
optimum value is used to generate the Q-table for the route's 
state-action pairs. As a result, the SRLS algorithm determines 
the shortest path between any two network nodes. 

 

 First, initializes the Q-table with zero. Next, the RRLS 

algorithm begins with node src as the initial state. The agent 

chooses the next node from the Action Space and uses the ε-

greedy discovery and exploitation process to select a node 

from the current node's neighbors as next-hop. Next, the agent 

handles the link information and the state 𝑆𝑡 to computes the 

reward-related with the action 𝐴𝑡, and the observes next state 

𝑆𝑡+1. The reward is calculated to follow equation (1).  After 

that, and the learning rate metrics, the reward, and the new 

state are considered, the agent revises the Q-function using 

equation (4).  It then goes to the next state, the episode ends, 

and the next episode starts. Finally, after the agent has finished 

a transition, it employs the result as Q-table to calculate the 

most reward for route between the src and dst, based on the 

state-action pairs that gain the max Q values.  After 

determining the optimal path for each source-destination node 

pair, the agent store the results as the routing table. Then, the 

controller SDN retrieves these optimal paths and forwards 

them to the routing tables of devices. 

IV. EVALUATION 

To perform the experiments, we deploy the Web-UI to 

support obtaining the users' requirements, as shown in Fig. 1. 

The figure below illustrates a map-based selector-region Web 

UI utilizing network parameters such as bandwidth, latency, 

and packet loss ratio; a user can select locations and decide 

the necessary QoS level and packets drop rates.   

 
Figure 1: Web-UI  for obtaining  user requests 

A. Experiment environment 

A virtual machine on VMware software with the 

Operating system Ubuntu 20.04.0.2 LTS is build to conduct 

the test. Also, the framework by using Python3.8, MySQL is 

designed. Finally, the Mininet simulator version 2.2.3 is used 

to builds the environment and the topology with 

OpenvSwitches 2.3.1; Openflow1.3 protocol. The topology 

with 23 nodes and 37 links is built by a Python script. Each 

network link was configured with bandwidth volume of 100 

~ 1000 Mbps, the delay range of 20 ~ 500ms, and the packet 

loss ratio of 0 to 10%. The QoS parameter specifies a 

bandwidth limitation of 1~10Mbps and a delay range of 40ms 

to 200ms. 

B. Analysis, Evaluation Results 

The experiments assume that the number of requests from 

users will increase frequently and continuously in our 

framework. We generate experiments with 10, 20, 30, 50, and 

up to 1000 requests to test this assumption. Finally, to assess 

the performance of our proposed method, we compare it to 

the Dijkstra algorithm.RRLS method is evaluated with the 

network with topology size 23 switches and increasing the 

number of requests up to 1000 requests while maintaining the 

parameters constant. Fig.2 shows the performance curves of 

two different approaches, demonstrating that the RRLS 

approach consistently outperforms Dijkstra when the number 

of requests increases. Specifically, during the initial period of 

the test, the number of accepted requests seems to be the same 

between the two methods when the number of requests is 

relatively small (less than 50). However, as the number of 

requests increases, the RRLS accepts a slightly more number 

of requests than Dijkstra and raises twice at the end of the 

simulation. 

Due to Dijkstra finding only one shortest path, so when 

the network resource serves a request, that cannot use it or 

not enough for other requests until its duration finishes. 

However, the RRSL method can be leveraged the network 

resource to accept more requests by finding other paths that 

are the same as the shortest.  
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 pisodes parameter  n

          pair of switches in           rc    t  

Network information  link-state

   P    List of the paths to connect the switches in   
Procedure 

 hoose any    in   and find the route to connect

         rc    t         

 nitiali e         A    0          a  A

    epi o e   1    n   

Start  t    rc    

        +1 i  not   t   

Select   for   with policy  from Q using 

the  -greedy method of e ploration and 

e ploitation 

  +1                gent gains the reward 
and observes ne t state   +1  

  +1                           

  + 
max
      +1                 

      +1    o to ne t state 

   

   

 et Q-table find the paths for    with state-

action pairs that gained the min Q-values

   

Store the set of paths for all node pairs in the network

©Copyright IEICE - APNOMS 2021 244



 

Figure 2: The number of accepted requests 

Besides, Fig.3 plots that our proposed method offers 

greater total cumulative bandwidth than the Dijkstra, despite 

the difference being minor. However, the result showed when 

the number of requests grows from 200 to 500. The 

cumulative bandwidth is almost equal between both methods 

until the end of the simulation. The explanation for this is that 

due to the limited resource, and when the resource begins 

saturating, the proposed method can accept more requests 

whose QoS requirements but the total cumulative bandwidth 

are constant. 

 

Figure 3: The accumulated bandwidth 

To evaluate the delay end-to-end, we select and generate 

the user request with the source and destination are S15, S23. 

We deploy both Dijkstra and RRLS to routing from S15 and 

S23. Dijkstra is finding only one shortest path with three hop 

counts. However, RRLS, based on the link stability, finds 

other two better paths, although the hop count is more than 

Dijkstra. Therefore, we use the iperf tool to evaluate the delay 

end-to-end of the two different routes of Dijkstra and RRLS.  

 
Figure 4: The average delay of End-to-End 

As fig.4 shown, the mean link delay values generated by 

RRLS are less than those given by Dijkstra. This is because 

Dijkstra's algorithm usually favors shorter, lower-cost, and 

use, more frequently but low-capacity routes, resulting in 

traffic concentration and congestion on these routes. 

V. CONCLUSION AND FUTURE WORK 

In this paper, the RRLS algorithm was proposed, an RL -

based solution with the link stability for intelligent and 

efficient routing in dynamic network provisioning.  The 

experiment results compared proposed RRLS to Dijkstra's 

algorithm has shown that RRLS performs better than 

Dijkstra's algorithms. RRLS generated more shortest paths 

than other algorithms; this can accept more user requests 

guarantee various level QoS constraints than Dijkstra's 

algorithm results in only one shortest route. The reward 

minimization allows the agent to discover, learn, and exploit 

the optimal routes for accepting the requests and leverages the 

resources. 

Due to the fact that both the proposed method and the 
existing Dijkstra-based routing scheme are based on the cost 
function for routing and making routing decisions, neither 
method takes temporal complexity into account. However, in 
point of fact, the complexity of time is a critical point. As a 
result, it could explain why the cost of activating a new service 
can be reduced if the time complexity is reduced. In the future, 
we intend to investigate a technique for augmenting RRLS 
with Deep Reinforcement Learning (DRL) in order to enhance 
routing decision-making capabilities 
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