
Dynamic Network Provisioning with

Reinforcement Learning based on Link Stability

1st Hong-Nam Quach

Department of Artificial Intelligence

Convergence

Chonnam National University

Gwangju, South Korea

quachhongnam1995@gmail.com

2nd Sungwoong Yoem

Department of Artificial Intelligence

Convergence

Chonnam National University

Gwangju, South Korea

yeomsw0421@gmail.com

3rd Kyungbaek Kim

Department of Artificial Intelligence

Convergence

Chonnam National University

Gwangju, South Korea

kyungbaekkim@gmail.com

Abstract— Recently, with rising attention and widespread

awareness of 5G technology, the rapid growth of mobile devices

and various network infrastructures and services emerge. As

means to provide responsive services and a guaranteed QoS

level to individual demands while maintaining resource

constraints, it is necessary to consider various factors affecting

network service performance and dynamic network

provisioning. In this paper, a Reinforcement Learning-based

routing algorithm is proposed, which uses the information

related to link stability to make routing decisions, called

Reinforcement learning-based Routing with Link Stability

(RRLS). To evaluate this algorithm, we applied the RRLS

algorithm on a dynamic network provisioning framework and

compared it to the RRLS algorithm and Dijkstra's algorithm.

The result shows that the proposed algorithm performed better

than Dijkstra's algorithm and shows that the proposed

approach is an appealing solution for dynamic network

provisioning routing.

Keywords— SDN, Network provisioning, Machine Learning,

Reinforcement Learning, Location-aware network, QoS demand

constraints, Link-stability.

I. INTRODUCTION

Recently, with the rapid development of network

infrastructures and services and the increased demand for

network QoS, dynamic network provisioning has been made

available to users to assist network service providers in

providing more flexible and personalized network services to

their customers. However, because of the harmful effects of

the Covid-19 pandemic, people are unable to leave their

homes, increasing the pressure on customers to join their

advanced networks, despite the fact that their network

resources and infrastructure are limited. As a result, they must

address the unique requirements contained in user requests.

This fact has prompted the question of how to more

efficiently leverage limited network resources to support

personalized network services and respond to a variety of

user-specific requests with varying constraints and a

guarantee of QoS while also considering the locations and

durations of a user request. To address this issue, network

service providers have been looking for a framework that can

make the best use of their available network resources while

also accommodating as many specific requirements as

possible.

Additionally, Software-defined Networking (SDN) is

well-known for its numerous benefits, including decoupling

the network control block from the underlying routers,

switching to a logically centralized controller, and

programmability of the network. Apart from simplifying

policy enforcement, network configuration, and evolution,

this separation of the control and data planes enables dynamic

control and management of packet forwarding and processing

in switches, which is expected to simplify network

management and improve network capacity utilization delay-

and-loss performance [1].

A Reinforcement Learning-based approach for routing

decisions in the SDN environment is proposed in this paper,

dubbed Reinforcement learning-based Routing with Link

Stability (RRLS). The result demonstrates that the RRLS

algorithm can discover, learn, and utilize potential routing

routes efficiently, even when network traffic changes

dynamically.

II. RELATED WORK

Recently, pathfinding in a location-aware network has
been the subject of many studies in recent years. For example,
a method of best pathfinding using Location-aware AODV
(Ad-hoc On-demand Distance Vector) for MANET (Mobile
Ad-hoc NETwork) is suggested in [2]. This paper used
multiple parameters such as node-ID, timestamp, GPS,
bandwidth, RTT, packet loss ratio, and others to modify an
existing protocol called AODV based on location to find the
best path among multi-path routing protocols for MANET. On
the other hand, the authors in [3], [4] proposed online
algorithms with an auxiliary graph for unicast and multicast
requests, including a bandwidth constraint and maximized
network throughput. However, these studies do not consider
the location-specific information of user requests. For
example, due to Covid-19, everyone can not go out; the
universities want to organize online classes via video
conference.

Furthermore, there are many students with different
location want to access class. As a result, they would require
a high-quality network for this type of lecture. In this case, the
requirements locations are needed to consideration by the
network providers to configuring a network slice with
guaranteed performance without network parameters. To
address the issue above, papers[5]-[6] mentioned an SDN-
based architecture that addresses customers' requirements,
including locations and QoS levels, and dynamically
implements a suitable network service. Following a user
request, the proposed system will map the corresponding
switches in network resources, construct the shortest paths
between these devices, and ensure the required QoS level.
Also, how to measure and calculate to have a correct route
between selected switches, on the other hand, becomes a
critical problem. To overcome this problem, .an approach to
accepting customers' requests (Spatio-Temporal QoS
requests), including position, use time, and QoS, is adopted by
Huu-Duy et al. [7].

©Copyright IEICE - APNOMS 2021 242

 Still, these studies have not examined how to troubleshoot
problems that arise unexpectedly on the network, such as node
congestions, damaged connection devices, broken devices, or
natural disasters. The Internet itself is a complex network that
is constantly changing its condition. Thus, when the
congestion occurs, the network providers must quickly
calculate and find alternate routes that impact the customer.
Machine Learning (ML) methods are now becoming more
commonly used in a variety of fields. Machine learning has
been used to address the impasse issues in network operation
and management [8]-[9], and RL is a technique that allows
agents to constantly explore their environment without prior
experience, become acquainted with the entire climate after
many training cycles, and eventually make the best decision
[10]. As a result, it is a good fit for dealing with network
management issues. In this paper, an RRLS algorithm is
proposed, which uses link-state information to identify, build
and, make the routing decision.

III. RL-BASED ROUTING WITH LINK STABILITY

 The Q-routing is a variation of the Q-learning algorithm.
Q-routing algorithm trains an agent to interact with the
environment. Agents take action on network situations called
states. First, the agent identifies an episode composed of steps
to convert the Q-table composed of states and activities into
an optimal state. Then, an action is chosen, the state is
transformed, and the best policy is set to approximate the
optimal Q-value via the best reward, according to steps
outlined in this episode. Therefore, this Q-routing algorithm
can be used to search for an optimal network. In this paper, we
propose an optimal routing scheme considering link stability.
In the next, we defined details on the RRLS agent, the RRLS
algorithm.
A. RRLS Agent

In this paper, we propose a technique to search for the

optimal paths based on reinforcement learning in

consideration of link-state pieces of information. Switches

configured in the SDN (Software-Defined Networking) data

plane are represented as states, and these states are managed

in the state space. The topology composed of this state space

is transferred to the agent as a graph corresponding to the

switch topology of the data plane. The adjacent switch of the

corresponding switch corresponds to the adjoining state of the

state. Action converts the current state into a state. Beyond

the agent and the environment, there are three primary

elements of an RL system: the reward, the policy, and the

exploration with exploitation.

• The Reward: The reward is used to the best route options

based on calculates link stability using the three-

parameter collected from customers requirements, such

as requirement bandwidth (𝑏𝑟𝑞), delay requests (𝑑𝑟𝑞),

packet-loss requests (𝑙𝑟𝑞) and then expresses it as

equation (1), and �̅�𝑟𝑞 , �̅�𝑟𝑞 , 𝑙�̅�𝑞 are the normalization

value of bandwidth, delay, and packet loss, respectively.

R = 𝜃1* �̅�𝑟𝑞 + 𝜃2* (1 − �̅�𝑟𝑞) + 𝜃3* (1 − 𝑙�̅�𝑞) (1)

The reward is proportional to bandwidth requests, and

the opposite is proportional to delay and packet-drop

requirements. These parameters also are the metrics of

link stability. It could be explained that the link stability

metric is a positive in the link state [11]. The values 𝜃1,

𝜃2 and, 𝜃3 ∈ [0, 1] values are parameters representing

weights for the matrix for calculating the compensation.

The weight is expressed as in equation (2).

 𝜃1 + 𝜃2 + 𝜃3 = 1, 𝜃1, 𝜃2, 𝜃3∈[0, 1] (2)

In equation (1), bandwidth, delays, and packet-loss rate

requirements are normalized, respectively. Since each

parameter is composed of different units in the agent's

learning process, the Min-Max method normalizes each

feature [12]. An example of normalization is shown in

equation (3).

 �̅�𝑖 =
𝑥𝑖 − min (𝑋)

max(𝑋)−min(𝑋)
 , 𝑥𝑖 ∈ X (3)

Equation (3) is used to calculate each normalized value

(requests of bandwidth, delay, and packet loss). In

equation (3), the collection of values used to normalize

represents X, and �̅�𝑖 is the value normalized.

• The Policy: In the Q-routing method, the policy is built

to maximize the reward value. Therefore, the agent

learns to avoid connection with high latency and drop

rate as well as to prefer links with a large available

bandwidth when selecting a route. By visiting all state-

action pairs, the agent estimates the optimum 𝑄𝑡+1(𝑆𝑡 ,

𝐴𝑡). Then updates the Q-value in the Q-table, which is

used to find the best routes for a node pair. When the

agent is in a state 𝑆𝑡 and conducts action 𝐴𝑡, the Q-value

is considered a measure for the total estimated reward.

The agent adjusts the Q-value using the learning rate, the

reward, and the new state. It is expressed as in equation

(4) for the Q-value.

𝑄𝑡+1(𝑆𝑡, 𝐴𝑡) = 𝑄𝑡(𝑆𝑡, 𝐴𝑡) + 𝛼*

 [𝑅𝑡 + max
A

𝑄𝑡(𝑆𝑡+1, 𝐴𝑡) − 𝑄𝑡(𝑆𝑡 , 𝐴𝑡)] (4)

The expression in square brackets in equation (5)

represents the improved value, which is the change in the

current estimate and the new estimate of the optimal

Qt(St, At) for a state-action pair (St, At). The new Q-value

(Qt+1) is based on the previous value Qt, which is affected

by (St, At, Rt, St+1) and 𝛼. Rt denotes the reward at time t,

and [0, 1] denotes the learning rate, which measures the

relative importance of new information learned to the

previously acquired information. When 𝛼 = 0 prevents

the agent from learning from the most recent (St, At) pair,

while 𝛼 = 1 accepts the agent to retain the gained

information by considering the immediate reward Rt(St,

At). The Q-learning approach is not only computationally

but also memory efficient. However, if the state space

and action space are massive, finding the optimal policy

will take a long time and need supplementary data.

• The exploration and exploitation method: The agent

repeats the exploration to select the best-expected

behavior to maximize the cumulative reward and the

investigation to select other behaviors in the hope of

obtaining a greater reward in the future. To overcome

this trade-off dilemma between search and use, the agent

uses ε-greedy exploitation and discovery method with ε

∈[0, 1], which proceeds with the probability of ε and

searches with the probability of 1− ε during the learning.

The behavior is defined using ε-greedy is given by

Equation (5).

©Copyright IEICE - APNOMS 2021 243

A = {
𝑚𝑖𝑛𝑄𝑡(𝑆𝑡 , 𝐴), 𝑖𝑓 < 𝜀

𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

The agent approximates the optimal Q-function across

all pairs of behavior states. Finally, the Q-value

approximated for the node pair is updated in the Q-table,

saved, and the episode ends. This policy is adopted as the

priority of the link with high available bandwidth, low

link delay, and packet-loss ratio to minimize the Q-value.

B. RRLS algorithm
 The SRLS algorithm uses learning to determine the
optimal paths between each pair of nodes in the data plane.
The learning rate, the parameter, the number of episodes to
learn, the source-destination nodes pairwise, and information
about the connections between them are the algorithm's input
parameters. The output contains a list of paths linking the
devices in the highest-rewarding node pairs. In addition, the
optimum value is used to generate the Q-table for the route's
state-action pairs. As a result, the SRLS algorithm determines
the shortest path between any two network nodes.

 First, initializes the Q-table with zero. Next, the RRLS

algorithm begins with node src as the initial state. The agent

chooses the next node from the Action Space and uses the ε-

greedy discovery and exploitation process to select a node

from the current node's neighbors as next-hop. Next, the agent

handles the link information and the state 𝑆𝑡 to computes the

reward-related with the action 𝐴𝑡, and the observes next state

𝑆𝑡+1. The reward is calculated to follow equation (1). After

that, and the learning rate metrics, the reward, and the new

state are considered, the agent revises the Q-function using

equation (4). It then goes to the next state, the episode ends,

and the next episode starts. Finally, after the agent has finished

a transition, it employs the result as Q-table to calculate the

most reward for route between the src and dst, based on the

state-action pairs that gain the max Q values. After

determining the optimal path for each source-destination node

pair, the agent store the results as the routing table. Then, the

controller SDN retrieves these optimal paths and forwards

them to the routing tables of devices.

IV. EVALUATION

To perform the experiments, we deploy the Web-UI to

support obtaining the users' requirements, as shown in Fig. 1.

The figure below illustrates a map-based selector-region Web

UI utilizing network parameters such as bandwidth, latency,

and packet loss ratio; a user can select locations and decide

the necessary QoS level and packets drop rates.

Figure 1: Web-UI for obtaining user requests

A. Experiment environment

A virtual machine on VMware software with the

Operating system Ubuntu 20.04.0.2 LTS is build to conduct

the test. Also, the framework by using Python3.8, MySQL is

designed. Finally, the Mininet simulator version 2.2.3 is used

to builds the environment and the topology with

OpenvSwitches 2.3.1; Openflow1.3 protocol. The topology

with 23 nodes and 37 links is built by a Python script. Each

network link was configured with bandwidth volume of 100

~ 1000 Mbps, the delay range of 20 ~ 500ms, and the packet

loss ratio of 0 to 10%. The QoS parameter specifies a

bandwidth limitation of 1~10Mbps and a delay range of 40ms

to 200ms.

B. Analysis, Evaluation Results

The experiments assume that the number of requests from

users will increase frequently and continuously in our

framework. We generate experiments with 10, 20, 30, 50, and

up to 1000 requests to test this assumption. Finally, to assess

the performance of our proposed method, we compare it to

the Dijkstra algorithm.RRLS method is evaluated with the

network with topology size 23 switches and increasing the

number of requests up to 1000 requests while maintaining the

parameters constant. Fig.2 shows the performance curves of

two different approaches, demonstrating that the RRLS

approach consistently outperforms Dijkstra when the number

of requests increases. Specifically, during the initial period of

the test, the number of accepted requests seems to be the same

between the two methods when the number of requests is

relatively small (less than 50). However, as the number of

requests increases, the RRLS accepts a slightly more number

of requests than Dijkstra and raises twice at the end of the

simulation.

Due to Dijkstra finding only one shortest path, so when

the network resource serves a request, that cannot use it or

not enough for other requests until its duration finishes.

However, the RRSL method can be leveraged the network

resource to accept more requests by finding other paths that

are the same as the shortest.

 NP

Learning rate 0.

 pisodes parameter n

 pair of switches in rc t

Network information link-state

 P List of the paths to connect the switches in
Procedure

 hoose any in and find the route to connect

 rc t

 nitiali e A 0 a A

 epi o e 1 n

Start t rc

 +1 i not t

Select for with policy from Q using

the -greedy method of e ploration and

e ploitation

 +1 gent gains the reward
and observes ne t state +1

 +1

 +
max
 +1

 +1 o to ne t state

 et Q-table find the paths for with state-

action pairs that gained the min Q-values

Store the set of paths for all node pairs in the network

©Copyright IEICE - APNOMS 2021 244

Figure 2: The number of accepted requests

Besides, Fig.3 plots that our proposed method offers

greater total cumulative bandwidth than the Dijkstra, despite

the difference being minor. However, the result showed when

the number of requests grows from 200 to 500. The

cumulative bandwidth is almost equal between both methods

until the end of the simulation. The explanation for this is that

due to the limited resource, and when the resource begins

saturating, the proposed method can accept more requests

whose QoS requirements but the total cumulative bandwidth

are constant.

Figure 3: The accumulated bandwidth

To evaluate the delay end-to-end, we select and generate

the user request with the source and destination are S15, S23.

We deploy both Dijkstra and RRLS to routing from S15 and

S23. Dijkstra is finding only one shortest path with three hop

counts. However, RRLS, based on the link stability, finds

other two better paths, although the hop count is more than

Dijkstra. Therefore, we use the iperf tool to evaluate the delay

end-to-end of the two different routes of Dijkstra and RRLS.

Figure 4: The average delay of End-to-End

As fig.4 shown, the mean link delay values generated by

RRLS are less than those given by Dijkstra. This is because

Dijkstra's algorithm usually favors shorter, lower-cost, and

use, more frequently but low-capacity routes, resulting in

traffic concentration and congestion on these routes.

V. CONCLUSION AND FUTURE WORK

In this paper, the RRLS algorithm was proposed, an RL -

based solution with the link stability for intelligent and

efficient routing in dynamic network provisioning. The

experiment results compared proposed RRLS to Dijkstra's

algorithm has shown that RRLS performs better than

Dijkstra's algorithms. RRLS generated more shortest paths

than other algorithms; this can accept more user requests

guarantee various level QoS constraints than Dijkstra's

algorithm results in only one shortest route. The reward

minimization allows the agent to discover, learn, and exploit

the optimal routes for accepting the requests and leverages the

resources.

Due to the fact that both the proposed method and the
existing Dijkstra-based routing scheme are based on the cost
function for routing and making routing decisions, neither
method takes temporal complexity into account. However, in
point of fact, the complexity of time is a critical point. As a
result, it could explain why the cost of activating a new service
can be reduced if the time complexity is reduced. In the future,
we intend to investigate a technique for augmenting RRLS
with Deep Reinforcement Learning (DRL) in order to enhance
routing decision-making capabilities

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of Science
and ICT), Korea, under the ITRC(Information Technology Research
Center) support program(IITP-2021-2016-0-00314) supervised by
the IITP(Institute for Information & Communications Technology
Planning & Evaluation).

REFERENCES

[1] S. Agarwal, M. Kodialam, and T. V. Lakshman. "Traffic engineering
in software-defined networks," in Proceeding of IEEE INFOCOM,
2013.

[2] Anagha Raich, Amarsinh Vidhae. "Best Path Finding using Location-

aware AODV for MANET," International Journal of Advanced

Computer Research Volume 3, Num3, pp.336-340, Sep. 2013.
[3] M.Huang et al., "Dynamic routing for network throughput

Maximization in Software-defined networks," in Proceeding of IEEE
INFOCOM, USA, 2016, pp. 1-9

[4] Mike Jia, W.Liang, M.Huang, Z.Xu, and Yu Ma, "Routing Cost
Minimization and Throughput Maximization of NFV-enabled
Unicasting in Software-defined networks," IEEE Transaction and
Network service Management, vol. 15, no. 2, pp. 732-745, June 2018.

[5] Van-Quyet Nguyen, Sinh-Ngoc Nguyen, Deokjai Choi, Kyungbaek
Kim, "Location-aware Network Provisioning," in Proceeding of

APNOMS 18th Conference, Korea, 2017, pp. 239-242.K. Elissa, "Title

of paper if known," unpublished.
[6] Quach, Hong-Nam, Chulwoong Choi, and Kyungbaek Kim. "Dynamic

Network Provisioning with AI-enabled Path Planning." 2020 21st

Asia-Pacific Network Operations and Management Symposium
(APNOMS). IEEE, 2020.

[7] Nguyen, Huu-Duy, et al. "Handling Spatio-Temporal QoS Requests for
Dynamic Network Provisioning." Proceedings of the 2019 KICS
Korean-Vietnam International Joint Workshop on Communications
and Information Sciences. 2019.

[8] J. A. Boyan and M. L. Littman, "Packet routing in dynamically

changing networks: A reinforcement learning approach," Advances in
neural information processing systems, 1994, pp. 671-678

[9] R. S. Sutton and A. G. Barto, "Reinforcement learning: an

introduction", MIT Press, Chp.1-3, 1994.
[10] Quach, Hong-Nam, Sungwoong Yoem, and Kyungbaek Kim. "Survey

on Reinforcement Learning based Efficient Routing in SDN." (2020).

[11] Jamali, Mohammad Ali Jabraeil. "A multipath QoS multicast routing

protocol based on link stability and route reliability in mobile ad-hoc

networks." Journal of Ambient Intelligence and Humanized
Computing 10.1 (2019): 107-123.

[12] L. Al Shalabi and Z. Shaaban, "Normalization as a preprocessing

engine for data mining and the approach of preference matrix," in Proc.
Int. Conf. Depend. Comput. Syst. (DepCoS), Szklarska Poreba, Poland,

2006, pp. 207–214.

©Copyright IEICE - APNOMS 2021 245

