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Abstract: In this paper, an inverse method based on singular
value decomposition is proposed to solve the inverse problem
with the generalized Tikhonov regularization to determine the
internal conductivity distribution in electrical impedance to-
mography. Numerical simulations have been carried out to
evaluate the performance of the proposed method.
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1. Introduction
As one of tomographic imaging modalities, electrical
impedance tomography (EIT) has been used to monitor two-
phase flow processes [1], because of its low cost and high
temporal resolution characteristics for monitoring transient
processes. EIT is a noninvasive imaging modality for deter-
mining the electrical properties inside the domain of interest.
Currents are injected and the resultant boundary voltages are
measured through the electrodes attached on the periphery of
the domain. The internal conductivity distribution is recon-
structed based on these current and voltage data.

EIT consists of forward and inverse problems. The for-
ward problem is usually solved based on numerical tech-
niques such as finite element method and boundary voltages
are computed based on injected currents and given conduc-
tivity distribution. The inverse problem is to determine un-
known conductivity distribution based on injected currents
and measured boundary voltages [2], [3]. The relationship
between the internal conductivity distribution and boundary
voltages is nonlinear. Therefore, to obtain good resolution of
reconstructed images, most inverse solvers employ iterative
algorithms such as iterative Gauss–Newton (iGN) method,
which are obtained by linearizing the nonlinear inverse prob-
lem. The iGN method estimates the conductivity distribution
by computing Jacobian matrix on every iteration. However, in
the case of monitoring fast transient processes, iterative meth-
ods may fail to reconstruct the actual characteristics of flows
because the Jacobian matrix is computed on every iteration.

Therefore, to monitor fast transient processes in a binary
mixture flows online, usually one-step algorithms are pre-
ferred to iterative algorithms due to less computational time.
These one-step methods are based on the assumption that the
varying conductivity distribution differs only slightly from
homogeneous distribution. With this assumption, the inverse
problem is linearized and the Jacobian matrix is computed be-

forehand. After that, the unknown conductivity distribution is
reconstructed with new experimental data, for example back-
projection [4], NOSER [5], linearization method [6], one-step
Gauss–Newton (oGN) method and so on.

Usually, in the one-step inverse methods, the standard
Tikhonov regularization is used to make the inverse problem
well-posed. Moreover, to improve the resolution of the re-
constructed images, different regularization operators can be
applied instead of the identity matrix as the regularization ma-
trix. However, for any regularization parameter, the inverse
matrix should be computed and it takes some time to deter-
mine the conductivity distribution in the binary mixture flow
domain.

To overcome this drawback, singular value decomposi-
tion (SVD) method can be used. In the case of the standard
Tikhonov regularization, the SVD method can be applied di-
rectly. However, when the inverse problem has the general-
ized Tikhonov regularization, the generalized SVD (GSVD)
method is applicable instead of the SVD method [7].

In this paper, to monitor the internal conductivity distri-
bution online, an inverse method based on the SVD method
is proposed to solve the inverse problem with the general-
ized Tikhonov regularization. To reduce the online computa-
tional time, the generalized regularization matrix is taken out
from the inverse computation term and the SVD method is
applied. Numerical simulations have been carried out to vali-
date the performance of the proposed method and their results
are compared with the conventional SVD method.

2. Image Reconstruction Method
2.1 Linearization

In EIT, measured and calculated boundary voltage data have
the following relation

V = U(σ) + w (1)

where V ∈ RM×1 is measured voltage vector and U(σ) ∈
RM×1 is voltage vector calculated by using finite element
method, σ is the conductivity distribution in a given domain,
w is the error and M is the number of measurements.

Linearizing (1) with the first order Taylor polynomial at
an initial conductivity σ0 and omitting higher order terms in-
cluding the error, the following equation is obtained

V = U(σ0) + J(σ0)(σ − σ0) (2)
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where J(σ0) ≡ ∂U(σ0)/∂σ0 ∈ RM×N is the Jacobian ma-
trix and N is the number of elements in a finite element mesh.
The initial guess σ0 can be obtained from the best constant
conductivity approximation that is the reciprocal of the resis-
tivity approximation [5]. Rewriting (2), the linear equation is
obtained

δV = J0δσ (3)

where δV ≡ V − U0, U0 ≡ U(σ0), J0 ≡ J(σ0) and δσ ≡
σ − σ0.

2.2 Conventional method

In the linear equation (3), there is no pseudo-inverse because
of ill-posedness. Therefore, to solve this equation, the regu-
larization should be employed to make it well-posed.

Usually, the standard Tikhonov regularization is used in
the inverse EIT problem. Therefore, with the aid of the regu-
larization, we have the so-called oGN method as

σ̂ = σ0 +
(
JT
0 J0 + α2I

)−1
JT
0 δV (4)

where σ̂ ∈ RN×1 is updated conductivity distribution, α is
the regularization parameter and I ∈ RN×N is the identity
matrix.

For any α in (4), the inverse matrix should be computed
and it takes more time to determine the internal conductivity
distribution in the binary mixture flow domain.

To resolve the drawback to it, the SVD method can be used
as another expression of (4).

[u, s,v] = svd(J0) ⇔ J0 = usvT (5)

where s is a non-negative diagonal matrix with singular values
of J0, u and v are unitary matrices where uTu = vTv = I.
Therefore, with the aid of the SVD method, we have

σ̂ = σ0 +

Ns∑
i=1

si
s2i + α2

uT
i δV vi (6)

where si are diagonal elements of s, ui and vi are column
vectors of u and v, respectively, Ns is the number of diagonal
elements of s.

2.3 Proposed method

To improve the resolution of the reconstructed images, a dif-
ferent regularization matrix can be applied instead of the iden-
tity matrix in (4). When applying the generalized Tikhonov
regularization in (3), we have

σ̂ = σ0 +
(
JT
0 J0 + α2P

)−1
JT
0 δV (7)

where P = RTR, R ∈ RN×N is the regularization matrix
that is a first-order discrete Gaussian smoothing operator [8].

For the generalized Tikhonov regularization, the GSVD
method can be applied [7]. However, in this paper, we solve
the inverse solver (7) using the SVD method.

Rewriting the matrix inversion term in (7), we have

(
JT
0 J0 + α2P

)−1
=

(
JT
0 J0 + α2P

1
2P

1
2

)−1

=
[
P

1
2

(
P− 1

2JT
0 J0P

− 1
2 + α2I

)
P

1
2

]−1

= P̃
(
P̃JT

0 J0P̃+ α2I
)−1

P̃

= P̃
(
J̃T J̃+ α2I

)−1

P̃ (8)

where P̃ ≡ P− 1
2 ∈ RN×N , J̃ ≡ J0P̃ ∈ RM×N and I ∈

RN×N is the identity matrix.
Therefore, the inverse solver (7) can be rewritten as

σ̂ = σ0 + P̃
(
J̃T J̃+ α2I

)−1

J̃T δV (9)

To avoid computing the inverse matrix for any α in (9), the
SVD method can be applied.

[ũ, s̃, ṽ] = svd(J̃) ⇔ J̃ = ũs̃ṽT (10)

where s̃ is a non-negative diagonal matrix with singular values
of J̃, ũ and ṽ are unitary matrices.

Therefore, for the generalized Tikhonov regularization, the
proposed method based on the SVD method can be obtained
as

σ̂ = σ0 + P̃σ̃, σ̃ =

Ns∑
i=1

s̃i
s̃2i + α2

ũT
i δV ṽi (11)

where s̃i are diagonal elements of s̃, ũi and ṽi are column
vectors of ũ and ṽ, respectively.

3. Results
The performance of the proposed method (SVDp) is evaluated
using numerical simulation and the results are compared with
the conventional method (SVDc).

A circular domain can be used as a cross-section of an in-
dustrial process pipe. In this paper, the circular domain is
used with 4 cm in radius and 1 cm in height. A fine mesh with
3104 elements is used for the computation of boundary volt-
age data, whereas a coarse mesh with 776 elements is used
for the computation of the inverse solver. Adjacent currents
with 10 mA amplitude are injected into the domain through
16 electrodes. To determine the regularization parameters for
the SVDc and SVDp methods, the L-curve method [7], [9] is
used.

For quantitative comparison of the inverse solvers in the
reconstructed images, the image error (IE) and the correlation
coefficient (CC) are used [10]

IE =
∥σ − σ̂∥
∥σ∥

(12)

CC =

∑N
i=1

[
(σi − σ̄)

(
σ̂i − ¯̂σ

)]√∑N
i=1 (σi − σ̄)

2 ∑N
i=1

(
σ̂i − ¯̂σ

)2 (13)
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Figure 1. Reconstructed images: first row - true images, sec-
ond row - images by SVDc and third row - images by
SVDp. The black circles in the images represent the true
positions of the anomalies.

where σ and σ̂ are the true and estimated conductivity vec-
tors, respectively, and σ̄ and ¯̂σ are the mean values of σ and
σ̂, respectively. It is noticed that smaller IE and bigger CC
values indicate better reconstruction performance of the in-
verse solver.

It is assumed that the background conductivity is 85×10−6

S/cm that is similar to the conductivity of tap water and the
anomaly conductivity is 3× 10−10 S/cm as bubbles or voids.
For noisy measurements, a zero-mean Gaussian random noise
is added to the calculated voltage data with 1% noise level.

Two scenarios are considered to verify the performance of
the inverse solvers. In the first scenario, a single anomaly with
0.5 cm in radius is located at the center, as shown in Fig. 1(a).
In the second scenario, two different sizes of the anomalies
are located in the domain, as shown in Fig. 1(b). Moreover,
all the reconstructions are displayed in the same color scales
(3 × 10−10 – 85 × 10−6 S/cm) to compare the reconstructed
images.

The true and reconstructed images are shown in Fig. 1. The

Table 1. Image error (IE) and correlation coefficient (CC) for
the numerical scenarios.

scenario 1 scenario 2
IE CC IE CC

SVDc 0.1127 0.1932 0.1950 0.6954
SVDp 0.1019 0.4807 0.1943 0.7157

Table 2. Online/offline computational times for each method.
SVDc SVDp GSVD

online 0.743 msec 0.566 msec 0.815 msec
offline 0.133 sec 1.968 sec 2.060 sec

first row shows the true images with single or multiple anoma-
lies. The second and third rows present the reconstructed im-
ages by using the SVDc and SVDp methods, respectively. In
the reconstructed images of Fig. 1, it is noted that the recon-
structed images by the proposed SVDp method has better res-
olution than those of conventional SVDc method.

The IE and CC values are shown in Table 1. From Table 1,
it is clear that the SVDp method has gives better reconstruc-
tion performance compared to the SVDc method.

The online computational times in the inverse calculation
are shown in Table 2 (Computer used: Intel(R) Core(TM) i5-
3570 CPU at 3.4 GHz, 8.0 GB RAM, Windows 7, Matlab
version 7.1 (R14)). The SVDc, SVDp and GSVD methods
take 0.743 msec, 0.566 mssec and 0.815 msec, respectively in
the online calculation, whereas the SVDp and GSVD meth-
ods needs more time, i.e. approximately 1.968 sec and 2.060
sec, respectively in the offline calculation. Here, the compu-
tational time is the average computed after each method is run
10 times.

4. Conclusions
In this paper, an inverse method based on the SVD method
is proposed to solve the EIT inverse problem with the gener-
alized Tikhonov regularization to determine the conductivity
distribution. In order to reduce the online computational time
of the inverse solver, the generalized regularization matrix is
taken out from the inverse computation term and the SVD
method is applied. Numerical simulations have been carried
out to validate the reconstruction performance of the proposed
method. The results show that the proposed method estimates
the conductivity distribution with better accuracy compared
to the conventional SVD method.
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