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Abstract: This paper presents an FPGA based hardware 

accelerator for feature transformation in real-time computer-

aided diagnosis (CAD) system for colorectal endoscopic 

images with narrow-band imaging (NBI) magnification. We 

have demonstrated the proposed FPGA implementation, 

which was very compact, the fulfiled performance 

requirement from the clinical doctors (throuthput > 5 fps, 

latency < 1 sec). It achiveded throughput: 16.7 fps and 

latency: 60 msec without quality reduction of real-time 

diagnostic support.  

 

1.  Introduction 
With the increase in the number of colorectal cancer patients, 

systems which support a doctor's diagnosis have been 

researched. The CAD system for colorectal endoscopic 

images with NBI magnification [1] has already been 

proposed [2]. The proposed CAD system identifies 3 types 

of endoscopic image (Type A, Type B, and Type C3) as 

shown in Fig. 1. Currently our software implementation of 

the system is able to identify with only the region of 120x120 

pixels at 14.7 fps and it takes about 20 minutes to process a 

whole Full-HD (1920x1080) image. Further improvement in 

the speed is needed for realization of high performance Full 

HD image recognition. Our system performance must be 

satisfied with a demand on the clinical doctors, throughput is 

within from larger than 5 fps and the latency is at least within 

1 second for on-the-fly diagnostic supporting. Therefor this 

paper proposes a hardware implementation of high speed 

feature transform for the CAD system.  

 

2.  Outline of Computer-Aided Diagnosis System 

Outline of the proposed CAD system is shown in Fig. 2. The 

system is based on a Bag-of-Features (BoF) representation 

of local features in the endoscopy image. In feature 

extraction, an input image is processed as Scan Window 

(SW). The local feature quantities are extracted at all key 

points, at which the feature extraction performed in the SW. 

We use the Dense Scale-Invariant Feature Transform (D-

SIFT) that takes key points to dense. First, the features 

obtained from the images of each type in learning phase are 

clustered based on Dense Scale-Invariant Feature Transform 

(D-SIFT) algorithm [3], and the center of each cluster is 

saved as a representative Visual-Word (VW). Next, in the 

testing phase, the features extracted from the input image are 

compared with the VWs of each type and a visual-word 

histogram is created by voting for the nearest representative 

VW. Then CAD system classifies the testing image within a 

endoscopy movie (frame) by comparing the histogram made 

in the learning phase of each type with that of the testing 

image. Then it displays a supporting result for doctor as a 

“second opinion”. In our software implementation, D-SIFT 

of Library VLFeat [3] is used for the feature extraction and 

Support Vector Machine (SVM) of LIBSVM [4] is used for 

type identification. 

3.  D-SIFT to VW Feature Transformation 

The feature transformation is performed in both learning and 

testing phases (Fig. 2). First, at the learning phase, the local 

features of all the key points in all image areas (for example 

all 120x120 pixel area) are extracted from a training image 

dataset. Then D-SIFT features are transformed by the 

hierarchical k-means clustering method [5]. In our 

implementation, k = 2 and each clustering step divides the 

feature set to two sub-sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Narrow Band Imaging (NBI) magnification findings [1]. 
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Figure 2. Computer-Aided Diagnosis System for Endoscopy Image. 
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The process repeats 8 times with the generated sub-set, 

making 256-VW and creating an 8-level binary searching 

tree. Then, 256-dimension VW histograms are created by 

voting all the feature vectors at each key point extracted from 

the testing image to the nearest VW of each type among A, 

not A, B and C3. A 512-dimension VW histogram is then 

created by combining those two 256-dimension histogram 

into one. Figure 4 explains the outline of the feature 

transformation algorithm. A D-SIFT feature vector of each 

key point which is extracted as shown in Fig. 2 (a) (1) is 

compared with the representative feature vector in each node 

of the binary tree to find the nearest VW. This process 

repeats 8 times, until the input feature vector reaches to the 

leaf node, which is the sub-cluster (or VW in other word) that 

key point belong to. Hence, each input key point is voted on 

one of 256 VWs for each type. Since we have 3 types, all key 

points of the testing image will be voted on three 256-

dimention VW histograms as shown in Fig. 2 (a) (2). Depend 

on the number of key points in the testing image, the VW 

histogram has different range of the maximum and the 

minimum. Hence, the histogram is normalized to the range 

[0, 1] by equation (1). The VW of ith dimension is defined to 

VWi , the normalized VWi
’ is as follows. 

𝑉𝑊𝑖
′ =

𝑉𝑊𝑖

√∑ 𝑉𝑊𝑖
2256

𝑖=1

 
(1) 

Then, the three 256-dimension histograms are combined 

together, making a 256-dimention x 2 types = 512-dimen-

sion VW histogram. This histogram is then used in Fig. 2 (a) 

(3) for testing phase. The same processing is done with the 

testing image by using the same VWs that are decided in 

learning phase. As a result, we get a 512-dimention VW 

histogram of the testing image. Also, there is the tradeoff of 

the distance in the distance comparison for feature vector 

classification. It helps to reduce both processing time and 

resources for VW histogram creation. In straight forward 

implementation, the computation of the denominator of 

equation (1) must wait until the VW histogram computation 

completes. We introduce a on-the-fly computation method 

for denominators of equation (1) to reduce the processing 

time in the hardware implementation. As a result, the waiting 

time for denominator computation in each dimension can be 

removed. 

 

 

 

 

 

 

 

 

 

 

4.  The Proposed Feature Transformation 

Architecture 

4. 1 Branch Processing Block 

The branch processing block searches the nearest VW for the 

current inputted feature vector in the distance metric. The 

distance comparison procedure of the input feature vector 

and the 2 representative feature (left and right) vectors at 

each level of the binary search tree is shown in Fig. 3. At 

each level, result of the distance comparisons of left and right 

feature vectors are used to determine the next searching node 

on the binary tree (Fig. 5). If the distance difference dj   0, 

then the left child node is selected for the next searching, 

otherwise di   0, the right child node is selected. The 

searching result at each level is represented by one bit for left 

or right. The combination of those results from 8 levels gives 

a 8-bit result, represents the VW number closed with the 

input feature vector among the 256 VWs given at the 

learning phase. Fig. 6 (a) shows the block design of the 

distance comparison block. Let fj be the input feature vectors 

and lj and rj are defined as the representative feature vectors 

for left and right child nodes, respectively. Then the 

Euclidean distance is defined as 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑈(𝑙𝑗 , 𝑟𝑗) =

(𝑙𝑗 , 𝑟𝑗)
2

and the Manhattan distance is calculated 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝐻(𝑙𝑗 , 𝑟𝑗) = |𝑙𝑗 − 𝑟𝑗|, respectively. 

4. 2 On-the-fly Normalization Computation 

The Normalization block computes the L2 Norm 

( ∑ 𝑉𝑊𝑖
2256

𝑖=1 ) in the denominator of equation (1). The 

conventional method requires the normalization process 

waits until the calculation of this L2 Norm is finished. We 

improve the Normalization block to be able to calculate the 

L2 Norm during VW histogram creation by using partial sum. 

    Let M be the total number of feature vectors which will be 

voting in current input image. Let 𝑁𝑗(𝑉𝑊𝑖) be the number of 

voting for the feature vector VWi (1  i  256) at the 𝑗𝑡ℎ 

voting. We define the partial sum of the L2 Norm for all 
iVW  

at the thj  voting as equation (2).  

𝑆𝑗 = ∑ (𝑉𝑊𝑖)
2

256

𝑖=1
 (2) 

When the(𝑗 + 1)𝑡ℎ voting is performed and the 𝑓𝑗+1 is voted 

the Visual Word 𝑉𝑊𝑘 the partial sum of the L2 Norm for all 

iVW   at the thj )1(    voting can be calculated as following 

manner. 

From the equation (3), Sj+1 can be calculated the partial 
sum Sj and the previous number of voting of 𝑁𝑗(𝑉𝑊𝑖). 

Because N0(VWi)=0 (1 i 256), we can easily obtain  
𝑆𝑀 = ∑ (𝑉𝑊𝑖)

2256
𝑖=1 by the above recurrent relation. So the 

partial sum can be calculated with the addition and shift 
operation on the fly of the voting. This is very suitable for 
hardware implementation without waiting time. The 

𝑆𝑗+1  = ∑ 𝑁𝑗+1(𝑉𝑊𝑖) 2256
𝑖=1   

         = ∑ 𝑁𝑗(𝑉𝑊𝑖) 2256
𝑖=1,𝑖≠𝑘 + (𝑁𝑗(𝑉𝑊𝑘) + 1)2  

         = ∑ 𝑁𝑗(𝑉𝑊𝑖)2256
𝑖=1 + (2𝑁𝑗(𝑉𝑊𝑘) + 1)  

            = 𝑆𝑗 + 2𝑁𝑗(𝑉𝑊𝑘) + 1 
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improved architecture is shown in Fig. 6 (b). The 
previous voted number 𝑁𝑗(𝑉𝑊𝑖)  of the current Visual 

Word 𝑉𝑊𝑖  for 𝑓𝑗 is read from the VW histogram memory 

and 𝑁𝑗(𝑉𝑊𝑖) + 1  is stored to the memory. At the same 

time, 2𝑁𝑗(𝑉𝑊𝑖) = 𝑁𝑗(𝑉𝑊𝑖) ≪ 1 is calculated by the left 

shift operation. In this way, we can obtain Sj+1 by the 
previous partial sum on the fly. On the fly L2 Norm 
computation reduces 256 clocks for each SW in the image. 

 

4. 3 Overview of the Architecture 

The block diagram of the proposed high speed feature 

transformation architecture, which includes the 4-Parallel 

Binary Tree Search, 4-Parallel Voting, and On-the-Fly 

Normalization, and SVM Scalling blocks are shown in Fig. 7. 

First, the input feature vector is transformed to the VW 

histogram by searching for the nearest VW and voting to 

corresponding element in the 4-set of visual words which are 

used in SVM classification. Finally, the each VW histogram 

is normalized in the Normalization and Scalling blocks 

before sending to the SVM classifier. 

5.  FPGA Implementation and Evaluation 

We have implemented feature transformation architechre 

with two distance metric (Euclidian:EU and Manhattan: MH) 

in the nearest neighbor search on FPGA, Altera Stratix IV 

(EP4SE530H35C2) device. The 4-parallel VW trans- 

formations are implemented for each sub-visual word, 

related with types A, B and C3. Their resource usages and 

processing time are shown in Table 1 for comparison. The 

DSP (Digital Signal Processing) block in Altera’s FPGA is 

the dedicated block used to calculate the fixed-point 

multiplication in high speed. The type classifier with SVM 

[6], which received feature transformation result in Fig. 2, 

can optimize its processing speed by using multiple DSP 

blocks in parallel. Hence, reducing the number of DSP 

blocks used in VW feature transformation leaves more DSP 

resources for the critical SVM module. MH distance 

implementation saves 128 DSP blocks compared with EU 

distance. Figure 7 is our hardware (FPGA) and software test 

bench platform for D-SIFT-to-VW feature transformation. 

The platform receive the input image with capture board on 

PC via a HD-SDI cable. Then the D-SIFT feature extraction 

is processed on the PC, and send feature quantities to feature 

transformation module on the FPGA. Finally, the result of 

SVM module processed on the PC is displayed as the 

supporting image. Figure 8 explains the performance 

estimation about 60x60 scan window size feature 

transformation. Figure 9 shows the speed up estimation of 

the proposed feature transformation accelerator in 

comparison with software implementation for the SW size as 

large as 240x240 pixels, which has about 4,000 key-points. 

Without pipeline and parallel implementation, the hardware 

accelerator is 18 times faster than that of software 

implementation. 600 time faster can be achieved if 4-parallel 

8-pipeline implementation is used. It guarantees the real time 

feature transformation (within 150 msec) for even the hard 

computation pyramid style hierarchical identification 

method, which contains nearly 2000 SW in 4 sizes in Fig. 10 

[6]. The hardware accelerator removes the barrier of real-

time processing in software implementation, which takes 64 

sec to process the same amount of SWs for pyramid style 

hierarchical identification method. The proposed hardware 

can be used as a D-SIFT-to-VW feature transformation 

accelerator for binary tree searching engine beyond the 

endoscopic images. Also, we estimate the performance of the 

whole system with the estimation result of other modules, 

feature extraction [7], and type identifier module [6]. From 

the implementation results, throghtput is 16.7 fps and latency 

is 60 msec. So it is achivable about the real time and on-the-

fly diagnostic support for clinical doctor (demand 

throghtput: >5 fps, latency: <1 sec). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7. Evaluation platform with hardware and software co-

design system. 
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(a) Branch processing block, (b) Normalization block. 
 

-
1

Σ

13

13

13

Branch

+

21

Histogram
Memory

+

we
18

12

rhmem

whmem
12

addr_vw

L2 Norm
calcuration

32

Normalization

vw_finish 1 0
1

(a) Branch processing block (b) Normalization block

8
FIFO #0

Input Data

Binary Tree Search

…

13

Histogram
Memory1

Left 
node 
Mem

1
2

8

FIFO #1

FIFO #7
13

right 
node 
Mem

1
2

8

13

1

Converter

Max Mem

×2

Converter 1
Histogram
Memory2

Voting

To SVM

Normalization

Scaling
18

18

14

14

32

32

32

32

14

18

Type A

…

distance
calculation +

Branch decision Lv.0

Branch decision Lv.1

Branch decision Lv.7

32

32

Sum
1

1

1

Shift 
Register

8 bits

7 bits

……

4-parallel processing 4-parallel processing

Figure 6. The proposed feature transformation architecture. 

Figure 4. Calculation at each level of binary tree. 
 

Plus
(0)

Minus
(1)

： feature vector of left cluster
： input feature vector

feature vector of right cluster

235



6.  Conclusion 

In this paper, we have proposed the FPGA based hardware 

accelerator for D-SIFT to VW feature transformation in real-

time CAD system. From the implementation result on FPGA 

evaluation board, it is very promising to use at an actual 

medical clinic in the view points of supporting quality and 

real-time processing performance. The processing time for 

240x240 scan window can be as fast as 0.15 msec@100 

MHz (with 4 parallel and 8 pipeline) and it is about 600 times 

faster than that of software implementation (90 msec). It 

guarantees that feature of 2000 SW in 4 SW sizes in 

complexed pyramid style hierarchical identification method 

can be processed in 150 msec. Future work includes the 

development of the whole CAD system including our D-

SIFT architecture [7] and our SVM architecture [6] in one 

FPGA board. 
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Table 1. FPGA implementation results. 

Performance Demand Euclid distance Manhattan distance

Max Operating 
Frequency

116.21 MHz 105.85 MHz

Latency
@100MHz

< 1 sec 60 msec@100MHz 60 msec@100MHz

Throughput
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> 5 fps 16.7 fps 16.7 fps

Resources

Usage/Available (Utilization)

Euclid distance Manhattan distance

Number of ALUTs (11%) (12%)

Number of Register (14%) ( 3%)

Total RAM [bit] (08%) ( 8%)

Multiplier
(# of DSP blocks)

(16%) ( 4%)

Figure 8. Performance evaluation for Full-HD endoscopy image 

with 60x60 scan window size. 
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Figure 9. Performance estimation for Full-HD endoscopy 

image with 4-parallel 8-pipeline implementation. 

Figure 10. Concept of the image segmentation method based on 

bottom-up hierarchical (pyramid style) SVM identifiers [6]. 
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