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Abstract: Abstract
Genetic algorithms are widely used method as solutions for
optimization problems. On the other hand, some researchers
report the limitations of GA, that is, it is difficult to obtain so-
lutions that satisfy constraints of optimization problems. To
solve this problem, we propose the GA with diversity that
using WS-model for Massively Parallel model of Genetic Al-
gorithm to overcome the constrains problem. Experiment this
system at Function optimizations and classroom layout opti-
mization. We confirmed that the results of proposed method
is better than other method.
Keywords—Genetic Algorithm, Funciton optimization, Graph theory,

WS-model

1. Background and Motivation
Genetic algorithms[1] (GA for short) are widely used

method as solutions for optimization problems. On the other
hand, some researchers report the limitations of GA, that is,
it is difficult to obtain solutions that satisfy constraints of op-
timization problems. In [2], the GA is applied for the class-
room optimization based on multi-agents simulation, and the
obtained solutions are mainly composed of the solution candi-
dates that do not satisfy the constraints of optimization prob-
lems. The reason why the genes that do not satisfy the con-
strains are generated, because the constrains of the optimiza-
tion problem are too complex.

To solve this problem, we propose the GA with diver-
sity to overcome the constrains problem. That is, the pro-
posed method increase the number of genes that can satisfy
complex constraint. We use the Massively Parallel model of
Genetic Algorithm [3] (MPGA for short) that is a form of
Parallel Distributed Genetic Algorithm[4] (PDGA for short).
The MPGA has a problem that slow calculation speed. To
solve this problem, we use Watts and Strogatz Model[7](WS-
Model for short) for MPGA. The MPGA can consider kind
of graph. WS Model is the real network model that possess
certain properties of small-world. In this report, we discuss
this property is able to solve the problem of MPGA.

In previous researches, Perego et al.[?] proposed that the
MPGA of cubic lattice type. They extend the MPGA in a
three-dimensional. In this research they do not apply to com-
plex problems. And if have made constrains, it may be con-
sidered that making it difficult to reach optimal solutions.

Section 2 introduces the proposed system. Section 3 shows
the experimental comparisons of Standard GA, MPGA and
the proposed method (MPGA+WS-Model). Using these GA
for Function optimization and classroom layout optimiza-
tion(fig. 1). Section 4 presents conclusions.

2. Proposed Method
In order to propose such the GA with diversity, we em-

ploy the massively parallel genetic algorithm. The overview

Figure 1. Function optimization(left) and Classroom layout
optimization (right)

of MPGA is shown in Fig. 2.
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Figure 2. Overviewt of MPGA

As can be seen from Fig. 2, the initialization, crossover,
mutation, evaluation processes are same as the standard GA
(SGA for Short) [6]. The difference between MPGA and the
SGA is the immigration part. Fig .3 represents the immigra-
tion part of MPGA, and the followings are overview of the
immigration process.

1). Divide the chromosomes into n groups
2). The chromosome in the group evolve over predefined

generations
3). Exchange the chromosomes between selected groups

based on the transition probability
4). Repeat (1), (2), (3) until the defined condition

2.1 Improvements of MPGA

MPGA has the following features,
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(1)Connect the group in a grid dividing 
the chromosomes in each group

(3)Replace the chromosome adjacent to 
each other in a certain probability

(2)Evolve in each groups

Crossover

Mutation

Figure 3. State of MPGA chromosome replacement

1). Because evolve unique to each group, it can create
chromosome having various properties

2). Because the crossover of chromosomes is not per-
formed at high speed, it has less susceptible to local op-
timal solution

Chromosome have various properties, it is possible to opti-
mize complex problem that simple GA can’t solve. However
it has slow optimization speed that can not converge to the
optimal solution. As a view of graph theory, MPGA has long
average path length, and make more groups, it is necessary
to has the more long average path length. Long path length
induce the slow calculating speed.

2.2 WS model

The problem of MPGA is slow optimization speed, be-
cause of long average path length. We have concluded that
can solve this with WS model. Fig.4 shows how to make WS
model.

Step 1 Step 2 Step 3
Group Edge that can chage chromosomes

Massively Parallel model of Genetic Algorithm

Watts and Strogatz model Genetic Algorithm

Figure 4. How to make WS mode

step1 Connect all of the vertices in the neighboring two of
the vertices and edges

step2 To create a new route to a vertex

step3 The route created for vertex at a certain probability

WS model is a kind of real world network that has the small-
world property. small-world property that connected any two

vertices through less vertices. In the case of n vertices, MPGA
has

√
n/2 of average path length, WS-Model haslog n of

average path length. For example in the case of 16 vertices,
average path length on MPGA will be 2.8, WSGA will be 1.2.
We consider this property can solve the problem at MPGA.

The proposed GA is based on the MPGA, and we extend
the network structure of chromosome group (Fig. 10, left) of
MPGA to WS-Model (Fig. 10, right). The extension is to
decrease the average of path length of the network structure,
and it increase the activities of immigration. It can control the
trade-off between the diversity and convergence.

3. Experimental Comparison
In order to show the effectiveness of the proposed method,

we perform two experiments.

3.1 Function optimization

The first experiment is function optimizations, where Ras-
tring function, Rosenbrock function and Griewank function
are used.

Fig. 5 is shown Rastrign function overview Rastrign func-

Figure 5. Rastrign function

tion represented by flowing equation

FRastrigin(x) = 10n+
n∑

i=1

(
x2
i − 10 cos(2πxi)

)
(1)

(−5.12 ≤ xi < 5.12)

(2)

There exists independently solutions rather dependencies be-
tween variables.

Fig. 6 is shown Rosenbrock function overview
Rosenbrock function is represented

FRosenbrock(x) =
n−1∑
i=1

(
100(xi+1 − x2

i )
2 + (1− xi)

2
)
(3)

(4)

(−2.048 ≤ xi < 2.048)

(5)

There are interdependent variable, sometime solution of the
overall greatly changes due to one solution. It is a function
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Figure 6. Rosenbrock function

of the unimodal It is difficult as an optimization problem by
dependencies between variables described above.

Fig. 7 & 8 is shown Griewank function overview and en-
larged view at vicinity 0．

Figure 7. Griewank function overview

Figure 8. Griewank function enlarged view of around 0

Griewank function is reperesented

FGriewank(x) = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

(
cos

( xi√
i

))
(6)

(−512 ≤ xi < 512)

(7)

As well as the Rosenbrock function a relationship of inter-
dependence between the variables, but function is the multi-
modal.

All function makemin(F(x)) = F (0, 0, . . . , 0) = 0. In
this experiment, apply SGA, MPGA and WSGA for three
functions. Chromosome correspond numbers to binary num-
ber. In this experiment, the chromosome length is set to 20,
it means split the set range220. The variable to set 20,Chro-
mosome number is 256 that are divided into 16 groups, 70
％ crossover rate, mutation rate of 3％, the experiment with
the number of 3000 generations.

The results obtained by SGA, MPGA, and WSGA are
shown in Table 1.

Table 1. average of final result
SGA MPGA WSGA

Rastrign 169.54 169.20 169.42
Rosenbrock 303.45 303.17 299.48
Griewank 86.21 91.42 79.56

It is difficult to recognize the effectiveness of the WS
model GA in the results of Rastrign function, however, in the
case of Griewank function and Rosenbrock results, we can
see the effectiveness of the proposed WS model GA.

Figure 9. Changes in the standard deviation

Form Fig. 9, that represents the standard deviation of chro-
mosomes of each methods, and it can be seen that the stan-
dard deviation of WSGA is partially bigger than those of other
method.

Fig. 10, presents the network structure of group of chro-
mosomes, and left is MPGA and right figure is WSGA, re-
spectively.
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Figure 10. The average value of each group of MPGA(left)
and WS model GA(right)（3000 th generation）

Figure 11. Part of the map to be used in the classroom layout
optimization problem

3.2 classroom layout optimization

The second experiment is applied to the classroom layout
optimization problem having a complex constraints. Shows
the map and the state of classroom placement optimization
problem Fig. 11&12.

Figure 12. Appearance of the classroom placement optimiza-
tion experiment

In this issue, it aims to create a classroom layout that stu-
dents moving time becomes smaller. As the experimental
conditions, 30 lectures are offered in one day, using 160 class-
rooms that exist in 1300 square meters of floor, 300 students
set up a situation where move on the basis of the course data.

The Chromosome number is 256 , 80％ crossover rate,
5％ mutation rate , the experiment with the number of 200
generations.

Results are shown Table2.
In this case, WS model also has the best results in average

and considering standard deviation, it has better result than

Table 2. Classroom placement optimization problem results
SGA MPGA WSGA

average 5930.8 5931.3 5734.0
standard deviation 496.2 320.0 334.3
minimum value 5218.0 5515.4 5300.3

MPGA.

4. Conclusions
Based on the MPGA, the GA with diversity has been pro-

posed by using the WS network structure in chromosome
groups.

MPGA has slow propagation of the solution because of the
average path length become too large. To solve this probrem,
using WS model that has small average path length.

Through the experimental comparison between the pro-
posed WS model GA and MPGA, SGA, using two problems
(function optimizations, classroom optimization problems), it
has been confirmed that the results of proposed method is bet-
ter than those of MPGA and SGA.
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