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Abstract—Optimizing the Content Delivery Network system
configuration has been addressed as an interesting problem for
the system owners. They want to minimize the investment cost
while guaranteeing their system’s quality. Several works have
resolved this problem as a single-objective optimization (SOO)
problem with heuristic methods. These approaches usually aggre-
gate the objectives into a scalar function and resolve the problem
with SOO algorithms. A typical drawback of these approaches
is that they cannot capture the trade-off between the objectives,
which usually leads to a sub-optimal solution. To overcome this
drawback, this paper considers the problem as a discrete multi-
objective problem and resolves it with meta-heuristic techniques,
namely Bayesian optimization (BO) and evolutionary methods.
More importantly, we also propose an empirical method to
improve the convergence speed of the standard BO methods in
discrete space. Our experiments show that our proposed method
can dramatically improve the rate of convergence. Moreover, we
apply our method to a real CDN system and compare our solution
with the system’s current solution. Our experimental results show
that our proposed solution can save about 39% of the current
cost with the same internal traffic.

Index Terms—Content Delivery Network, Bayesian Optimiza-
tion, Genetic Optimization, Multi Objective Optimization

I. INTRODUCTION
Content Delivery Networks (CDNs) have gained a lot of

attention from academia and enterprise in recent years. The
rapidly increasing usage of Over-The-Top (OTT), Video-on-
Demand (VoD), and media streaming services put pressure on
the conventional hosting schema, in which a content server
or data center handles all user requests. On the other hand,
CDNs offload traffic from content servers by responding to
end-user requests in place of the content servers and in closer
physical and network proximity to the end-users. Therefore,
CDN systems can help the content providers to guarantee their
service’s latency and quality.

However, the trade-off between cost and service quality
has been addressed as a big challenge for CDN providers.
They want to reduce the investment cost but still guarantee
or maximize the service quality at the same time. This paper
describes a general form of CDN configuration optimization
problem. We consider the configuration problem as a discrete
multi-objective optimization (MOO) problem. The problem
contains two conflicting objectives and takes discrete variables
as input. After that, we also consider a practical instance
of our general problem and resolve it by applying MOO
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algorithms. Furthermore, our quality function is based on
simulation environments, which can be very time-consuming
to evaluate. The BO approach is a well-known method for
optimizing expensive black-box functions. For these reasons,
we choose Bayesian methods as our approach. In this paper,
we adopt the multi-objective Bayesian optimization (MOBO)
approach, which is originally designed for continuous space,
to optimize more effectively in discrete space.

The remaining sections are organized as follows. Section II
describes related works. Section III reminds background about
the considered MOBO algorithms. Section IV describes the
general problem and a practical use case. Section V describes
our proposed method to resolve the problem. The next section
is our experimental results. Finally, section VII consists of
concluding remarks and our future work.

II. RELATED WORK

There were several Bayesian-based MOO methods, namely
ParEGO [1], USeMO [2], DGEMO [3], TSEMO [4], etc. The
above BO approaches use Gaussian Process (GP) as their
surrogate model. The original design of GP model is applied
to continuous space. The issues of applying single-objective
BO methods in discrete space were described and analyzed in
[5]. To adapt these algorithms for discrete problems, a basic
approach is that resolving the problems similar to continuous
problems, but the result of the evaluation functions is rounded
to the closest integer. A typical drawback of this approach is
that GP can ignore behaviors of the actual function. Merchán
et al. [5] proposed the kernel-based approach to overcome
this issue. Especially, they applied a transformation function
to round the input of the Matérn kernel function. However,
they only applied and experimented with these methods in
single-objective problems. In another approach, Luong et al.
[6] proposed a hyper-parameter tuning strategy to improve the
trade-off between exploration and exploitation when applying
BO algorithms in discrete SOO problems. This paper proposes
an empirical method that motivated by Luong’s method to
improve the convergence speed of MOO algorithms.

III. BACKGROUND

In this paper, we will consider two state-of-the-art MOBO
methods, namely TSEMO and USeMO. Assume we have a
k-objective optimization problem. In general, the methods are
iterative and based on four major steps:
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• Step 1: The statistical models M1, M2,..., Mk for each
of the k objective functions are trained with the historical
data from the initial samples and the past iterations.
These models are built based on GP. Moreover, we
choose Matérn function [7] as the GP’s kernel. The
hyper-parameters of Gaussian Process is optimized by
log marginal likelihood method [8].

• Step 2: Instead of solving the expensive original MOO
problem, the methods will build a cheap MOO problem
and apply an MOEA to find the Pareto set [2]. The cheap
MOO problem corresponds to AF (M1), AF (M2),...,
AF (Mk) objective functions. We denote AF (.) as any
acquisition function of the standard single-objective BO
algorithm. In this paper, we evaluate USeMO with Upper
Confidence Bound (UCB) [9] and Expected Improvement
(EI) [10] as the acquisition functions. Both TSEMO and
USeMO use NSGA-II to optimize the cheap problem.

• Step 3: After solving the cheap problem, a candidate set
xs is chosen from the Pareto set by heuristic strategies
[2], [4].

• Step 4: The training set of the GP model is updated by
adding the new candidate set xs. The process is back to
step 1.

IV. PROBLEM DESCRIPTION
A. General problem

We consider the CDN configuration optimization problem as
a discrete multi-objective optimization problem. Our target is to
minimize the investment cost fcost and maximize the system
quality function fquality at the same time. These functions
take X as an input vector. The input X of the problem can be
CDN configurations as: memory sizes of caching servers, the
bandwidth of network links, etc. These configuration parameters
are usually integer-based or categorical variables. Therefore, we
assume that X is discrete. fquality can be any quality metrics
as QoS, internal traffic, average latency, jitter, etc. fcost is used
to measure the investment cost for the CDN system. The next
section will be a practical instance of the general problem.

B. Memory Allocation for Surrogate Nodes
We consider a CDN system that contains N surrogate

nodes. The problem goal is to find an optimal memory
size configuration for all surrogate nodes, which minimizes
the hardware cost and reduces the internal traffic ftraffic
simultaneously. The problem takes xi, ∀i ∈ {0, ..., N} as input
variables. In this problem, minimizing ftraffic is equivalent
to maximizing fquality . The fcost function is simply the total
memory of system, fcost =

∑
xi. To simplify the problem,

all surrogate nodes use Least-Recently-Unit (LRU) algorithm
as their caching eviction method. Moreover, resolving this
problem by using a brute-force approach is infeasible.

V. SOLUTIONS
The original Bayesian algorithms resolve optimization prob-

lems in continuous space. This paper adapts a batch version of
TSEMO and USeMO to resolve the problem [3]. To initialize
the population in the discrete space, we use a modified version
of Latin Hypercube Sampling (LHS) [11].

Luong et al. [6] proposed a method to help the standard
BO methods avoid the repetition of observations in discrete
space. Their method try to balance between exploration and
exploitation by turning the parameters of acquisition function
and the kernel function. A drawback of this method is that it
requires resolving an optimization problem to find an optimal
set of factors, which is cumbersome and very expensive in
MOO problems. Tuning all of these factors can be a complex
optimization problem and consume a lot of time.

In this paper, we consider UCB acquisition function. We
denote µ(x) and σ(x), respectively, as mean and variance of the
surrogate model’s posterior distribution. The exploration factor
is denoted as β. The UCB acquisition function is formalized
as follow:

αUCB(x) = µ(x) +
√
β × σ(x)

To reduce the fine-tuning time, we only tune the β factor.
We consider a MOBO algorithm is stuck in a local optimum
when the Pareto fronts of two adjacent iterations are has the
same pattern and very close to each other. Moreover, we use
the bidirectional Hausdorff distance to evaluate the similarity
between Pareto fronts of adjacent iterations [12]. Formally, we
determine the algorithm get stuck in a local optimum when
the distance between two corresponding Pareto fronts is less
than ξpf . The β factor can be determined by resolving the
following optimization problem:

β∗
t = argmin(g(βt)), βt ∈ [0, 1] (1)

g(βt) = (βt − β0
t )− d(PFt, PF

0
t )

PFt and PF 0
t are Pareto fronts, which are suggested by

the adjusted βt and the original β0
t , respectively. Remarkably,

instead of computing PFt based on the black-box function,
which is very expensive, we use the trained surrogate model
to evaluate this value. There are two objectives for the above
problem as:

• Maximize the difference between Pareto fronts generated
by two adjacent iterations.

• Minimize the adjustment of the β factor.
We use L-BFGS-B [13] optimizer to resolve this problem.

Algorithm 1 describes the details of our proposed method.
Remarkably, our proposed idea can be extrapolated to other
acquisition functions.

VI. EXPERIMENTS
A. Environment

We consider three topologies of CDN system to evaluate
the convergence of MOBO algorithms with different sizes of
the problem:

• A small size topology of the Vietnam system, which has
5 variables that corresponding to 5 caching nodes. [14]

• A medium-size topology of a France telecommunication
company, which has 13 variables. [15]

• A big-size topology of a Japan telecommunication com-
pany, which has 55 variables. [16]

Figure 1 illustrates the topology of the CDN networks.
This section considers two types of datasets, such as a real
dataset and a simulated dataset. We run ten executions for each
experiment with 30 iterations and a batch size of 10.
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Algorithm 1: The proposed method for tuning β factor

Input: Initial data D0 = (x0, y0);
for t← 0 to n do

/* k is the size of Dt */
β0
t is computed as suggested in [9] ;

Compute PF 0
t by using the surrogate model ;

if {Distance(PFt, PF
0
t ) < ξpf} then

Find the optimal β∗ using (1), with 0 < β < 1 ;
Select the next sample xt+1 with β∗ ;

else
Select the next sample xt+1 with β0

t ;

Compute yt+1 obtained by the black-box function;
Augment Dt+1 = {Dt, (xt+1, yt+1)} and update

the surrogate model.

Origin Server

France

Vietnam

Japan

Fig. 1: The topology of the CDN systems.
Regarding to the proposed algorithm, we configure ξpf =

0.001. The NSGA-II algorithm uses uniform mutation operator
and single-point crossover operator with a probability of 0.9.
We run this evolutionary algorithm with 100 initial samples
and 30 generations.

B. Results & Discussion
1) Experiments with simulated data

TABLE I: ENVIRONMENT SETUP FOR THE SIMULATED
DATA EXPERIMENTS

Number of contents 500
Warm up 1000 requests

Evaluation 1000 requests
Range of caching

memory [50, 450]

Content popularity Gamma(k = 0.475, θ = 170.6067)

Table I shows the setup for the simulated data experiments.
Figure 2 depicts the evolution of the average hypervolume
value and the Pareto front of the last iteration computed by
each algorithm in three types of CDN networks. At first glance,
our proposed method outperforms other algorithms in all three
topologies.

Furthermore, USeMO-UCB is better than USeMO-EI in all
of the experiments. This observation is reasonable because
we use the standard EI function, which is widely known to
be too greedy. In another way, the UCB acquisition function
contains the β exploration factor, which will be tuned during
the optimization process. This mechanism will help UCB to

balance exploration and exploitation better than the standard
EI.

2) Experiments with the real data
This section leverages the real trace log from the Vietnamese

CDN system to compare our proposed algorithm and the
current real system configuration. Particularly, we only get the
system trace log in the peak hour of a day to run experiments.
Importantly, the search range of input variables is from 25%
to 400% of the real memory size. Running optimization on
this workload can consume a lot of time. Therefore, we only
consider original USeMO-UCB algorithm, its transformation
version and our proposed method.

Figure 3 illustrates the Pareto front of three versions of
USeMO-UCB algorithm at the last iteration. Especially, our
proposed method still outperforms the basic and transformation
versions of the USeMO-UCB algorithm. More importantly, the
Pareto points of all the considered algorithms are dominated
the current solution of the real system. Therefore, we can use
our proposed solutions to optimize the current system. Figure
4 depicts the trade-off between the cost-saving and the relative
traffic of our solution. In particular, our solution can save nearly
39% of the current cost with the same internal traffic of the
system.

VII. CONCLUSIONS AND FUTURE WORK
In this work, we have modeled the general framework of the

CDN configuration optimization problem. The framework can
be applied to several types of configuration problems: caching
replicas, topology optimization, bandwidth allocations, etc. An
instance of the general problem is described and resolved by the
MOBO algorithms. Moreover, we also propose a tuning method
to adapt the exploration factor of the acquisition function. The
experiments show that our method can improve the convergence
of MOBO algorithms. In the future, we will apply the general
framework with more sensitive quality metrics like latency,
jitter, etc. Although, reliable emulators or test-beds can evaluate
these metrics, these tools usually consume a significant amount
of time for each evaluation. Therefore, a lightweight and more
effective optimization algorithm is vital to optimizing based
on these tools.
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