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Abstract—Industrial monitoring systems are developed and
deployed to continuously and remotely monitor the status of
industrial equipment and detect failures. A gateway node collects
status data from sensors attached to machines and then sends
them to a server for analysis and evaluation. In this paper,
we propose a method to detect anomalies in communication
between a gateway and a server over an LTE network, whose
failure would bring a serious result such as an operation halt
of the whole factory. We model a time series of dynamically
and instantaneously changing response delay as sawtooth waves
and detect an anomaly based on their statistical characteristics.
Through evaluations using real measurements and artificial
data, we verified that our method can detect both of constant
increase and decrease, rapid increase, long-term increase, and
slow decrease in the response delay.

Index Terms—industrial monitering system, Long Term Evo-
lution, response delay, model-based anomaly detection

I. INTRODUCTION

Recently industrial monitoring systems [1] are widely de-

ployed for fast detection of abnormal condition such as a

failure of a machine and reduction of personnel cost in inspec-

tion. However, a communication failure such as extraordinary

delay and disconnection would bring a serious and irretrievable

result causing a halt of the factory. In this paper, we focus on

anomaly detection in communication from a gateway placed

at a factory to a cloud server through an LTE (Long Term

Evolution) network, which is widely used as the backhaul.

There have been several attempts to analyze the characteristics

of an LTE network and detect anomalies. For example, in

[2], they analyzed a mechanism of instantaneous increase in

the delay and proposed a method to reduce its occurrence

by controlling packet size and transmission interval based on

radio quality. In [3], they proposed a machine learning based

method to predict a drop of a session between a user equipment

and a base station.

In this paper, we first propose a method to model a time

series of dynamically changing response delay measured in

communication between a gateway and a cloud server through

an LTE network. More specifically we focus on a specific char-

acteristic of a time series of response delay to form sawtooth-

like waves, that is, a gradual increase followed by quick

decrease of delay. We model a time series of instantaneous

response delay measurements by a time series of sawtooth

index

D
e

la
y
 [

m
s
]

1 240 480 720 960 1200 1440

5
0

1
0

0
1

5
0

Fig. 1. Measured response delay (from 0 am to 6 am, Tuesday 23rd June)

waves, which is expressed by a set of characteristic values,

that is, a starting point delay, a slope gradient, a slope width,

a gap width, and an end point delay. Next we propose an

anomaly detection method to identify irregular delay based on

statistical properties of sawtooth waves. For this purpose, we

define the anomaly score using the Mahalanobis distance and

adopt a threshold-based detection algorithm.

The paper is organized as follows. First section II introduces

a feature extraction method to extract sawtooth waves from a

time series of response delay. Next in section III we propose

an anomaly detection method and verify its performance using

real and artificial data. Finally section IV summarizes the

paper and shows future direction.

II. FEATURE EXTRACTION FROM RESPONSE DELAY DATA

First, we conducted measurements in the environment sim-

ilar to an industrial monitoring system. We used a Raspberry

Pi equipped with Quectel’s EC21-J LTE module as a wireless

device for a gateway and an AWS server as a cloud server. The

Raspberry Pi was placed in our laboratory at Osaka University.

Every 15 seconds the Raspberry Pi first obtains a timestamp

and then executes a Ping command (packet size 60 bytes

including the header, ICMP ECHO, one packet) to measure

the response delay of a connection to the AWS server via an

LTE network of IIJ Mobile’s Service Type D [4].

The measurements lasted for four weeks from Tuesday 23rd

June to Wednesday 22nd July 2020. In total, we obtained

172,800 measurements. However, because some measurements

failed due to malfunctions of the Raspberry Pi, we used

valid 167,427 measurements. An example of a time series of

obtained response delay is illustrated in Fig. 1.
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Fig. 2. Extracted sawtooth wave

Fig. 3. Characteristic values of ith sawtooth wave

A. Sawtooth wave extraction algorithm

In extracting sawtooth waves, first to eliminate instanta-

neous fluctuations a low-pass filter is applied to a time series

of measured response delay. In this paper we use 0.008 Hz

as the cutoff frequency based on the power spectrum and the

smoothness of the obtained results. As an example, a result

of application of the low-pass filter to Fig. 1 is shown in Fig.

2. Hereafter we write a time series of response delay after

applying the low-pass filter as {x1, x2, . . . , xn}, where n is

the number of measured values.

Next sawtooth waves are extracted from the time series. The

ith sawtooth wave is represented by five values as shown in

Fig. 3. They are the starting point delay x̂ai
whose position is

ai, the slope gradient αi, the slope width Li from the starting

point position ai to the position bi of the peak in delay, the

gap width Gi from the peak position bi to the starting point

position ai+1 of the next sawtooth wave, and the end point

delay x̂ai+1
at ai+1.

The starting point ai is determined based on gradients of

regression lines. When the range of regression [k, k + l] is

moved from k = bi−1, a peak of the preceding sawtooth wave,

one by one, the gradient of a regression line first increases

from a negative value, next changes to a positive value, and

then becomes stable on reaching the next slope. l is a constant

and set at the typical sawtooth width. A point where the

gradient becomes stable is considered ai. Because of the space

limitation, the detailed algorithm is not shown in the paper.

The peak position bi is determined based on gradients of

regression lines as well. Fixing the left end of regression at

the starting point ai and expanding the range of regression one

by one, the gradient of a regression line continuously decreases

after the right end of the regression range exceeds the peak.

(a) x̂ai
(b) αi

(c) Li (d) Gi

Fig. 4. Probability distribution of characteristic values

Then, the slope width Li is derived as bi − ai + 1.

The regression line x̂j = αij + ci is obtained in the range

[ai, bi], where αi means the slope gradient of the ith sawtooth

wave. It must be noted that the starting point delay of the

ith sawtooth wave is not xai
in analysis but x̂ai

obtained by

substituting the starting point ai to the regression line function.

Finally, the starting point position ai+1 of the next sawtooth

wave is determined and the gap width Gi is derived as ai+1−
bi−1. Figure 2 shows an example of extracted sawtooth waves

by red zigzag lines.

B. Statistical characteristics of sawtooth waves

The probability distributions of characteristic values of

extracted sawtooth waves are summarized in Fig. 4. Red lines

show probability density functions obtained by fitting, whose

exact functions are shown in the figure to save space. As

shown in the figure, the starting point delay follows the logistic

distribution, the slope gradient and the gap width follow the

mixture Gaussian distribution, and the slope width follows the

Cauchy distribution.

A scatter plot and a correlation matrix are shown in Fig.

5. As shown, there is positive correlation between the starting

point delays x̂ai
and x̂ai+1

. It means that there is a midterm

trend in response delay and it is not fully random. In addition,

there exist negative correlations between the staring point

delay x̂ai
and the slope gradient αi and between the slope

gradient αi and the slope width Li, respectively. It is because

there is a kind of upper limit in the response delay in usual

conditions. Therefore, when the starting point delay is large,

the slope gradient becomes small, for example.

III. ANOMALY DETECTION IN RESPONSE DELAY

In this section we propose an anomaly detection method

which uses statistical properties of sawtooth waves extracted

from measured response delay.
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(a) scatter plot (b) correlation coefficient

Fig. 5. Correlation between characteristic values

A. Anomaly detection method

An anomaly score of a sawtooth wave extracted from a

time series of measured response delay is determined base on

its statistical distance to training data obtained in the usual

condition. As a distance measure of multivariate analysis we

use the Mahalanobis distance [5].

To obtain reference data, characteristic values of sawtooth

waves of training data are first normalized to have the distribu-

tion with mean 0 and variance 1 by the Z-score normalization.

We divide sawtooth waves into six groups, because there are

three and two peaks in the distributions of the slope gradient

αi and the gap width Gi, respectively.

In anomaly detection, a time series of response delay is first

obtained by realtime measurement. Next, a sawtooth wave is

extracted by the feature extraction method explained in section

II. Then, the anomaly score of the sawtooth wave is derived as

the minimum of the Mahalanobis distances from normalized

characteristic values of the wave to the six groups. Finally,

an anomaly is considered to happen when the anomaly score

exceeds the predetermined threshold.

B. Detection results

We used measurements obtained from Tuesday 23rd June

to Wednesday 15th July as training data. Then we applied

our anomaly detection method to the training data, the test

data which are obtained from Thursday 16th July to Wednes-

day 22nd July, and the artificial data generated following

the statistical characteristics shown in II-B. Since it is not

possible to intentionally cause failures of the LTE network

under operation, we changed statistical characteristics of the

artificial data to imitate unusual conditions of communication

through an LTE network. In evaluation we used the percentage

of anomalies, that is, sawtooth waves whose anomaly score

exceeds the threshold. The threshold was tentatively set at 5

based on preliminary evaluation.

1) anomaly scores of training data, test data, and artificial

data: Figure 6 shows an example of a time series of xi (blue

line), extracted sawtooth waves (red line), and the correspond-

ing anomaly scores (black line). In this case all sawtooth waves

are considered normal for their anomaly scores lower than 5.

In Fig. 7(a), a box plot of anomaly scores of the training

Fig. 6. Transition of the anomaly score (training data)

(a) training data (n =
903)

(b) test data (n = 233) (c) artificial data (n =
1000)

Fig. 7. Box plot of the anomaly score

data is shown. Our method considers the most of training data

as normal as we expected. About 0.5% of sawtooth waves

have the anomaly score larger than 5, but it is mainly because

of extraction failures. Regarding test data, the percentage of

anomalies is about 0.9% as shown in Fig. 7(b). Therefore,

the test data is also regarded as normal. The percentage of

anomalies of artificial data is about 1.1% as shown in Fig. 7(c),

meaning that the artificial data have the similar characteristics

with real measurements.

2) anomaly scores of artificial anomalies: To verify that

our method can detect anomalies, we changed statistical

characteristics of artificial data based on scenarios S1 to S10.

Results are summarized in Tables I to III.

S1: x̂ai
×A,αi ×A,Li ×A, or Gi ×A, 0.5 ≤ A ≤ 2.

S2: x̂ai
+A, −30 ≤ A ≤ 60 ms.

S3: x̂ai
+A and αi ×B, −30 ≤ A ≤ 60 ms, 0.5 ≤ B ≤ 2.

S4: αi ×A and Li ×A, 0.5 ≤ A ≤ 2.

S5: Var(x̂ai
) ×A, Var(αi) ×A, Var(Li) ×A, or Var(Gi)

×A, 0.5 ≤ A ≤ 2.

S6: change normalized Cor(x̂ai
, x̂ai+1

) from −1 to 1.

S7: change normalized Cor(x̂ai
, αi) from −1 to 1.

S8: change normalized Cor(αi, Li) from −1 to 1.

S9: Var(ηi) ×A, 0.5 ≤ A ≤ 2. ηi is a random variable

added to artificial sawtooth waves and follows the normal

distribution with mean -0.03 and variance of 4.2.

S10: Add a spike-shaped delay with probability p,

0.1% ≤ p ≤ 5%.

Regarding S1 through S4, our method is sensitive to changes
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TABLE I
ANOMALY[%] OF SCENARIOS FROM S1 TO S5

multiple and/or 0.5 0.75 1 1.25 1.5 1.75 2
addition [ms] -30 -15 0 15 30 45 60

S1 x̂ai
100 85.9 1.1 7.1 100 100 100

S1 αi 1.1 1.2 1.1 2.1 2.7 4.5 7.5

S1 Li 0.4 0.7 1.1 2.5 4.7 8.7 15

S1 Gi 1.2 1 1.1 1.5 2.4 4.6 9.1

S2 100 43.5 1.1 35.8 99.9 100 100

S3 100 48.3 1.1 44.3 100 100 100

S4 0.6 0.7 1.1 4 12.7 33.9 60.4

S5 x̂ai
4 3.9 1.1 3.8 2.3 4.3 4.2

S5 αi 2.3 3.3 1.1 4.9 6.7 7.1 8.2

S5 Li 3.5 3.9 1.1 4.5 4.3 5.7 6.1

S5 Gi 2.7 3.4 1.1 3.1 3.9 3.6 5

in the response delay (S1 x̂ai
, S2, and S3) where the percent-

age of anomalies significantly increases by the manipulations

as shown in Table I. It is because those manipulations change

the distribution of x̂ai
enough to make the difference to the

original distribution very large. On the contrary, the percentage

of anomalies does not change much or even decreases with

small multipliers in S1 on αi, Li, and Gi and S4. It is because

the modified distribution overlaps with the original and thus

the statistical difference is small. With large multipliers the

percentage of anomalies increases in those scenarios. It means

that the rapid or long-term increases in the response delay as

well as the slow decrease are likely to be detected as unusual,

which is more harmful than the opposite situation, that is,

the slow or short-term increase and the fast decrease in the

response delay. In the case of S4, the degree of increase in

the percentage of anomalies is higher than those in S1 on

αi and Li, because the manipulation changes the multivariate

distribution of them.

On the other hand, based on results of S5, the influence of a

change in distribution on the percentage of anomalies is not as

significant as in S1. Since the mean of the modified distribution

is kept at the same position as the original distribution in the

variance manipulation, the statistical difference is small the

anomaly score does not increase very much.

In Table II, the sensitivity of the anomaly detection method

to a change in correlation is not high except for the case

of increasing the correlation in S8. It is mainly because

of the wide distribution of characteristic values as shown

in the scatter plot of Fig. 5. Changing the correlation does

not cause significant difference in their relative distributions.

Consequently, the percentage of anomalies does not change

much. In the case of S8, because of the narrow bivariate

distribution of the slope angle αi and the slope width Li,

especially increasing the correlation results in the increase in

the percentage of anomalies.

As shown in Table III, increasing the variance of the noise

and the occurrence rate of instantaneous increasing response

delay made the percentage of anomalies slightly high. The

main reason of the small change is that our feature extraction

method often fails in extracting sawtooth waves. Because of

TABLE II
ANOMALY[%] OF SCENARIOS S6, S7, AND S8

corr. coef. conv-
erted to N(0, 1)

-1 -0.75 -0.5 0.5 0.75 1

corr. coef. -1 -0.77 -0.49 0.53 0.71 0.98
S6 anomaly[%] 0.6 7.1 4.8 1.1 1.1 1.4

corr. coef. -0.86 -0.62 -0.39 0.42 0.63 0.88
S7 anomaly[%] 1 1.3 1.1 2.7 5.2 3.5

corr. coef. -0.09 -0.21 -0.04 0.23 0.32 0.48
S8 anomaly[%] 1.2 1.1 4.8 13.3 14.4 19.3

TABLE III
ANOMALY[%] OF SCENARIOS OF S9 AND S10

multiple 0.5 1 1.5 - - base

S9 2.6 6 16 - - 1

rate[%] 0.1 0.5 1 3 5 base

S10 9.9 8.4 9.9 12.7 14.1 1.8

the increased variance and additional spikes, the gradient of

a regression line becomes less stable. Such extraction failures

can be regarded as a sign of anomaly.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed the anomaly detection method

which uses statistical characteristics of sawtooth waves ex-

tracted from a time series of response delay measurements. We

showed that our method can detect both increase and decrease

in the response delay very well when the degree of change

is more than about 20%. Furthermore, it can detect rapid

increase, long-term increase, and slow decrease in the response

delay as a trend different from the usual condition. On the

other hand, it was not possible to detect irregular fluctuations

in the instantaneous response delay.

As future work we plan to evaluate our proposal in other

environments, for example, with poor wireless signal. We will

investigate how a time series of response delay and statistical

characteristics of extracted sawtooth waves change depending

on the environmental condition. In addition, we also need to

improve the feature extraction method.
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