
Efficient FPGA-based Hardware Algorithms for
Approximate String Matching

Sadatoshi MIKAMI Yosuke KAWANAKA
Shin’ichi WAKABAYASHI1 Shinobu NAGAYAMA2

Graduate School of Information Sciences, Hiroshima City University
3-4-1, Ozuka-higashi, Asaminami-ku, Hiroshima 731-3194 Japan

TEL: +81-82-830-1760 FAX: +81-82-830-1792
Email: 1wakaba@hiroshima-cu.ac.jp, 2s naga@hiroshima-cu.ac.jp

Abstract: In this paper, an efficient FPGA-based hardware
algorithm and its extensions are proposed for calculating the
edit distance as a degree of similarity between two strings.
The proposed algorithms are implemented on FPGA and
compared to software programs. Experimental results show
the effectiveness of the proposed algorithms.

1. Introduction

Approximate string matching is a problem to search for
strings similar to a given pattern from the input string [3]. As
main applications of approximate string matching, it can be
used for text retrieval in database, analysis of DNA, protein
sequences in bioinformatics, etc. Algorithms for approximate
string matching have been extensively studied to shorten its
computation time.

Since the advent of VLSI era, it has become possible to
realize algorithms on VLSI circuits as hardware algorithms
to drastically reduce the computation time to solve problems
[6]. For string matching, several hardware algorithms have
been proposed for various kinds of string matching [1]. For
example, Mukhopadhyay [7], Foster and Kung [2] proposed
hardware algorithms for the string pattern matching problem
[5]. Kikuno, et al. proposed a hardware algorithm for the
longest common subsequence problem [9].

In this paper, an efficient FPGA-based hardware algorithm
and its extensions are proposed for the string-to-string cor-
rection problem. The string-to-string correction problem is a
problem to calculate the edit distance as a degree of similarity
between two strings [8]. The proposed algorithm and its ex-
tended versions are implemented on FPGA and compared to
software programs. Experimental results show the effective-
ness of the proposed algorithms.

As previous results related to our study, for the problem
of calculating the edit distance, Yu, et al. have also proposed
a hardware algorithm to be implemented on an FPGA chip
[10]. However, in this algorithm, character symbols in a pat-
tern were restricted to A, C, G, and T, since their algorithm
was originally proposed for the analysis of DNA sequences.
It would be very difficult to extend this algorithm for the gen-
eral approximate string matching problem. As far as we in-
vestigated, no previous results have been known for hardware
implementation of a string matching engine for an arbitrary
set of character symbols.

This paper is organized as follows. Section 2 gives the
definition of edit distance, and formulates the string match-
ing problem discussed in this paper. Section 3 presents a

hardware algorithm to solve the problem. Section 4 shows
some extensions of the proposed hardware algorithm. Sec-
tion 5 gives experimental results to show the effectiveness of
the proposed algorithms. Finally, some concluding remarks
are given in Section 6.

2. Edit Distance

Let A be a finite string (or sequence) or characters (or sym-
bols). A < i > is the ith character of string A; A < i : j >
is the ith through jth characters (inclusive) of A if i ≤ j. |A|
denotes the length of string A.

An edit operation is a pair (a, b) �= (Λ, Λ) of strings of
length less than or equal to 1, and usually written a → b,
where Λ denotes the null string. String B results from the
application of the operation a → b to string A, written A ⇒
B via a → b, if A = σaτ and B = σbτ for some strings σ
and τ . We call a→ b a change operation if a �= Λ and b �= Λ;
a delete operation if b = Λ; and an insert operation if a = Λ.

Let γ be an arbitrary cost function which assigns to each
edit operation a → b a nonnegative real number γ(a → b).
Extend γ to a sequence of edit operations S = s1, s2, . . . , sm

by letting γ(S) =
∑m

i=1 γ(si). We now let the edit distance
δ(A, B) from string A to string B be the minimum cost of all
sequences of edit operations which transform A into B [8].

Given a pair of strings A and B, the approximate string
matching problem is to find the edit distance between two
strings A and B. For this problem, the following theorem
holds [8].
[Theorem 1] Let A(i) = A < 1 : i > and B(j) = B < 1 :
j >, and D(i, j) = δ(A(i), B(j)), 0 ≤ i ≤ |A|, 0 ≤ j ≤ |B|.
Then,

D(i, j) = min{
D(i− 1, j − 1) + γ(A < i >→ B < j >),
D(i− 1, j) + γ(A < i >→ Λ),
D(i, j − 1) + γ(Λ→ B < j >)} (1)

for all i, j, 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|. �

From Theorem 1, for given two strings A and B, the
edit distance δ(A, B) from string A to string B is given as
D(|A|, |B|). In this paper, the matrix D is called the edit dis-
tance matrix.

In this paper, we slightly extend the approximate string
matching problem, and formulate this extended problem as
the multiple string matching problem. Given a set of finite
strings R = {S1, S2, . . . , Sm} and a pattern string P , the

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

201

multiple string matching problem is to calculate the edit dis-
tance δ(P, Si) from string P to string Si for all i, 1 ≤ i ≤ m.
We call each string Si to be matched a text string. When
m = 1, this problem is equivalent to the original approxi-
mate string matching problem. Applications of this problem
include the text retrieval in large text data base, and DNA se-
quence alignment in bioinformatics.

3. Basic Algorithm
In this paper, for the multiple string matching problem, we

propose a hardware algorithm, which is implemented on FP-
GAs, to realize a high-speed calculation of edit distance. The
basic idea of the proposed algorithm is as follows. From The-
orem 1, for a given pair of two strings, the edit distance is
obtained by computing the edit distance matrix. In this ma-
trix computation, one can easily understand that all entries on
any positive slope diagonal lines can be computed in paral-
lel, since there is no data dependencies among them. Figure
1 shows how to compute the edit distance matrix in parallel.
The basic idea of the proposed algorithm is to assign a pro-
cessing element to each row of the edit distance matrix, and
all processing units calculate the values of matrix elements on
each positive slope diagonal line in parallel.

p1

p2

p3

p4

s1 s2 s3 s4 s5

text

pa
tte

rn

matrix D

Figure 1. Parallel calculation of the edit distance matrix.

Pout Pin

Sin Sout

D1in D1out

D2in D2out

Pout Pin

Sin Sout

D1in D1out

D2in D2out

Pout Pin

Sin Sout

D1in D1out

D2in D2out

S

P

Clock

Cell 0 Cell 1 Cell n

Figure 2. Systolic architecture.

Figure 2 shows the overview of the proposed architecture.
The architecture consists of (n + 1) simple processing units,
called cells, where n = |P |. As mentioned, the entire algo-
rithm calculates diagonal elements in the edit distance matrix
in the parallel and pipeline fashion. In the following, the de-
tails of the algorithm are explained.

3.1 Inputs of the Algorithm

For a given pattern string P = p1p2 . . . pn, let P ′ =
θp1p2 . . . pn, and each character in P ′ is stored in each cell in

advance, where θ is a special start symbol. The pattern string
is input from the rightmost cell. On the other hand, a given set
of text strings to be matched is concatenated and sequentially
input from the leftmost cell. When concatenating multiple
text strings, special symbol “,” is inserted as a delimiter, and
θ and λ are added as the first and last symbols, respectively.
For example, if S1 = abb, S2 = cba, and S3 = acb then the
text string to be input is S = θabb, cba, acbλ.

P

C

Sc Pf

D1 D2

F

ALU

DM

Pout Pin

Sin Sout

D1in

D2in

D1out

D2out

Figure 3. The cell.

t0: begin
C ← Sin;
if Sin = θ then Sc ← true;
if Sin = λ then Sc ← false;
F ← (Sin = θ) ∨ (Sin = “,′′) ∨ (Sin = λ);
sub← DM(P, C);

end;
t1: begin

if Sc then
case (Pf, F) begin

00: D1← min{D1in + del,
D1 + ins, D2in + sub};

01: D1← D1in + del;
10: D1← D1 + ins;
11: D1← 0;

end;
D2← D1;

end;

Figure 4. The algorithm of a cell.

3.2 The Cell

The structure of a cell is shown in Fig. 3. Each cell consists
of two latches P and C, which are used to store characters in
P and Si. The cost function γ is stored in the memory DM
in each cell. DM is realized as a two-dimensional array of
words, and is called the edit cost matrix. For any pair of two
characters a and b, DM(a, b) returns the value of γ(a → b).
The values of all elements of the edit cost matrix are set in
advance before starting the string matching. D1 and D2 are
also latches, which store values of the edit distance matrix D.
Sc, Pf and F are flags to be used in the cell algorithm.

202

3.3 Behavior of the Cell

As noted, the behavior of each cell is classified into two
phases, the pattern input phase and the text matching phase.
In the former phase, the pattern string is input from the right-
most cell one character by one character, and shifted left un-
til all characters are stored in corresponding cells. Any cell
which stores the start symbol θ in latch P sets the flag Pf to
1, and any other cell sets Pf to 0. In the text matching phase,
the actual text matching is performed. In the following, we
only describe the cell behavior of the text matching phase.

Figure 4 shows the behavior of a cell during the text match-
ing phase. We assume that each clock cycle consists of two
clock phases (t0, t1). We also assume that the delete and in-
sert costs of any character are the same values, and denoted
as del and ins, respectively. For each clock cycle, each cell
repeatedly executes this algorithm.

Cell i stores pattern character pi, and it calculates all ele-
ments D(i, ∗) of the edit distance matrix. Assume that cell i
receives text string character si from its left neighbor cell,
stores it in latch C, and starts calculating D(i, j) in clock
cycle Tk. Figure 5 shows this situation. From Theorem 1,
to calculate D(i, j), values of D(i, j − 1), D(i − 1, j), and
D(i− 1, j − 1) are required. Cell i holds D(i, j − 1) in latch
D1, which was calculated in clock cycle Tk−1. D(i − 1, j)
was calculated also in clock cycle Tk−1 in cell i − 1, and
stored in D1. D(i − 1, j − 1) was calculated in clock cycle
Tk−2 in cell i−1, and stored in D1. This value was shifted to
D2 in clock cycle Tk−1. Thus, all values required to calculate
D(i, j) are stored in cell i or cell i− 1.

When cell i receives θ or “,” or “λ”, then the latch D1 is
initialized, and set to 0. It means that matching for a next text
string is started.

pi-1

sj-1

D(i-1,j-1)
D(i-1,j-2)

P
C

D1
D2

pi

sj-2

D(i,j-2)
D(i,j-3)

P
C

D1
D2

pi-1

sj

D(i-1,j)
D(i-1,j-1)

P
C

D1
D2

pi

sj-1

D(i,j-1)
D(i,j-2)

P
C

D1
D2

pi-1

sj+1

D(i-1,j+1)
D(i-1,j)

P
C

D1
D2

pi

sj

D(i,j)
D(i,j-1)

P
C

D1
D2

Cell i-1 Cell i

Tk-2

Tk-1

Tk

Figure 5. Behavior of the algorithm.

Figure 6 shows how string matching was processed by the
proposed algorithm when P = abc and R = {S1, S2, S3},
where S1 = abb, S2 = cba, and S3 = acb. From this figure,
it is easy to understand that the proposed algorithm solves
the multiple string matching problem in O(L) clock cycles,
where L is the total length of input string R.

θ a b b , c b a , a c b

θ
a
b
c

0 1 2 3 0 1 2 3 0 1 2 3
1
2
3

0
1
2

1
0
1

2
1
1

1
2
3

1
2
2

2
1
2

2
2
2

1
2
3

0
1
2

1
1
1

2
1
2

Cell 1
Cell 2
Cell 3
Cell 4

P
S

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
T12

T13

T14

T15

Figure 6. Example of string matching.

3.4 Memory Structure

As mentioned, each cell has its own copy of the edit cost
matrix DM , in which matrix element DM(a, b) represents
the change cost from character a to character b, i.e., γ(a→ b).
When implementing the proposed algorithm on FPGAs, the
edit cost matrices are implemented by using the block RAMs.
When the edit cost matrix is symmetric, it is easy to reduce
the total memory size to its half size with a simple address
transformation.

In the algorithm shown above, the insert and delete costs
are assumed to be fixed. However, it is easy to extend the
algorithm so that arbitrary insert and delete costs are al-
lowed by extending the edit cost matrix. We newly intro-
duce a special symbol, denoted Λ to show the null character.
Then, DM(a, Λ) represents the delete cost of character a,
and DM(Λ, b) represents the insert cost of character b. Be-
fore starting string matching, each cell reads the delete cost
from the edit cost matrix for a pattern character which the
cell has in latch P , and stores it in a register. The leftmost
cell reads the insert cost from the edit cost matrix for a text
character which the cell receives from the input terminal, and
stores it in another register. This value will be shifted right
as the text string character is moved right. Note that the per-
formance would be degraded if each cell reads the insert and
delete costs from the edit cost matrix when D(i, j) is calcu-
lated, since it would require three times of memory accesses.

4. Extensions of the Algorithm

In this paper, we propose two extensions of the basic hard-
ware pattern matching algorithm presented in the previous
section. The aim of the first extension is to reduce the size
of memory DM . There are some applications, in which once
a pattern string is set, the same pattern will be used for a fairly
long period of time, that is, the number of text strings, m, is
large. For such applications, the total memory size can be
further reduced.

When a pattern P is given, each character in P is assigned
to each cell. If the ith cell has character x in P , then this
cell requires DM(x, ∗) to calculate the edit distance. Thus,
in this extension, called Ext1, each cell maintains the data in
one row in DM , and those data are set before starting string
matching.

The aim of the second extension, called Ext2, is to shorten
the computation time. In the original algorithm, each cell
compares one character in the input text S i with one charac-

203

θ a b b , c b a , a c b

θ
a
b
c

0 1 2 3 0 1 2 3 0 1 2 3
1
2
3

0
1
2

1
0
1

2
1
1

1
2
3

1
2
2

2
1
2

2
2
2

1
2
3

0
1
2

1
1
1

2
1
2

Cell 1

Cell 2

P
S

T1 T2 T3 T4 T5
T6

T7

Figure 7. Extension of the algorithm.

ter in the pattern string P in each clock cycle. We modify the
algorithm so that two characters in the text with two charac-
ters in the pattern simultaneously. Figure 7 shows how string
matching was performed by this modified algorithm, when
the input strings were the same as shown in Fig. 6. Compared
to Fig. 6, it is easy to understand the total clock cycle of this
extension was the half of the one for the original algorithm,
although the behavior of each cell of this extension was much
complicated than the original one. From Theorem 1, we in-
troduced the recurrence relations to represent four matrix el-
ements to be calculated in parallel. The cell structure was
modified from the original one so that it calculates four ma-
trix elements simultaneously. Due to lack of space, we omit
its details.

5. FPGA Implementation

We have designed three hardware algorithms presented
in this paper with Verilog-HDL, and implemented them on
an FPGA board, which consists of a Xilinx FPGA chip
VC4VLX100-11F1513. We have also developed a software
program for solving the multiple string matching problem,
and compared it with the proposed hardware algorithms im-
plemented on the FPGA board. The software program was
executed on a PC with a Pentium 4 3.6GHz CPU.

Table 1 shows the experimental results. In this table, “Soft-
ware” shows the result of software program, and “Basic”
shows the result of the basic hardware algorithm described in
Section 3.. “Ext1” and “Ext2” show the results of two extended
algorithms described in Section 4.. “#LUT”, “Clock”, “Time”
and “Ratio” show the number of LUTs used to implement the
circuit, the clock frequency of the FPGA chip, the execution
time, and the speedup ratio of the hardware algorithms com-
pared to the software program, respectively. The length of
a pattern was 120 for the cases of “Software”, “Basic” and
“Ext1”. For the case of “Ext2”, the length of a pattern was set
to 60. The total length of input strings to be matched with a
pattern was set to 120, 000.

Table 1. Experimental results.
Algorithm #LUT Clock [MHz] Time [μS] Ratio

Software – – 1,040,000 1
Basic 12248 165 729 1427
Ext1 16331 224 537 1937
Ext2 43965 169 355 2930

From the experimental results, we see that the proposed
hardware string matching engines drastically outperformed
the software program. Compared to the “Basic” algorithm,
performance of “Ext1” was improved, since the circuit of the
latter was simpler than the former one, and thus the critical
path of the latter was shorter than the former. Performance
of the “Ext2” was twice of the “Basic”, since the number of
clock cycles of the former was the half of the latter.

We would also like to point out that, since the proposed
hardware algorithms have an simple one-dimensional systolic
architecture, it is easy to implement the algorithms for longer
patterns by connecting multiple FPGA chips.

6. Conclusion
We have proposed a hardware algorithm for the string

matching problem, and implemented it on an FPGA. We have
also shown several extensions of the proposed algorithm. Ex-
perimental results showed the effectiveness of the proposed
algorithms. Future research includes the development of
hardware algorithms for different kinds of string matching.
In particular, besides the string-to-string correction problem,
there are many other problems, for which dynamic program-
ming algorithms have been known in bioinformatics [4]. It is
interesting and important to develop hardware algorithms for
those problems.

Acknowledgments

This research was supported in part by Grant-in-Aid for
Scientific Research (C)(No.20500054) from Japan Society for
the Promotion of Science.

References

[1] J.Aoe (eds.), Computer Algorithms: String Pattern
Matching Strategies, IEEE Computer Society Press,
1994.

[2] M.J.Foster, H.T.Kung, The design of special-purpose
VLSI chips, IEEE Computer, 13, 1, pp.26–40, 1980.

[3] P.A.V.Hall, G.R.Dowling, Approximate string match-
ing, ACM Computing Surveys, 12, 4, pp.381–402, 1980.

[4] N.C.Jones, P.A.Pevzner, An Introduction to Bioinfor-
matics Algorithms, The MIT Press, 2004.

[5] D.E.Knuth, J.H.Morris, V.R.Pratt, Fast pattern matching
in strings, SIAM Journal on Computing, 6, 2, pp.323–
350, 1977.

[6] C.Mead, L.Conway, Introduction to VLSI Systems,
Addison-Wesley, 1980.

[7] A.Mukhopadhyay, Hardware algorithms for nonnu-
meric computation, IEEE Trans. Computers, C-28, 6,
pp.384-394, 1979.

[8] R.A.Wagner, M.J.Fischer, The string-to-string correc-
tion problem, Journal of ACM, 21, 1, pp.168–173, 1974.

[9] T.Kikuno, N.Yoshida, S.Wakabayashi, Hardware algo-
rithms for computing longest common subsequence,
Trans. IECE, J65-D, 8, pp.997–1004, 1982, in Japanese.

[10] C.W.Yu, K.H.Kwong, K.H.Lee, P.H.W.Leong, A Smith-
Waterman systolic cell, Proc. FPL2003, LNCS 2778,
pp.375–384, 2003.

204

