DOA Estimation by Virtual-ESPRIT Algorithm Using SLS Method

Kenta NODA[†], Student Member, Nobuyoshi KIKUMA[†], Fellow, Kunio SAKAKIBARA[†], Senior Member, and Yoshiki SUGIMOTO[†], Member

1. Introduction

Virtual-ESPRIT (VESPA) [1] is a method for estimating the direction of arrival (DOA) using higher-order statistics. In this study, to further improve the estimation performance, we propose SLS-VESPA using the SLS (Structured (Structured Least Squares) method [2], and compare it with the conventional method TLS-VESPA [1].

2. DOA Estimation by SLS-VESPA

2.1 VESPA

We use a K-element uniform linear array with the element spacing of half wavelength and assume that L waves (plane waves) are incident on the array. Let $x_1(t), \dots, x_K(t)$ be the received signals of each element, and then the receiving array vector $\mathbf{x}(t) \in \mathbb{C}^{K \times 1}$ is expressed as

$$\boldsymbol{x}(t) = [\boldsymbol{x}_1(t), \cdots, \boldsymbol{x}_K(t)]^T \tag{1}$$

VESPA uses the following cumulant matrices with the 1st and 2nd elements as guiding sensors.

$$C_{11} = \operatorname{cum}\{x_1^*(t), x_1(t), \mathbf{x}(t), \mathbf{x}^H(t)\}$$
(2)

$$c_{12} = \text{cum}\{x_1(t), x_2(t), x(t), x^{(1)}\}$$
 (3)
Note that cum is a fourth-order statistic operation [1][2]
computed by multiple snapshots of the receiving vector.

2.2. SLS-VESPA

Using the matrices
$$C_{11}$$
 and C_{12} , define the matrix C_r
 $C_r = \begin{bmatrix} C_{11} \\ C_{12} \end{bmatrix} \in \mathbb{C}^{2K \times L}$ (4)

This C_r is singular value decomposed and represented only in the L-dimensional signal subspace as follows.

 C_r

$$= \boldsymbol{U}_{\boldsymbol{S}}\boldsymbol{\Sigma}_{\boldsymbol{S}}\boldsymbol{V}_{\boldsymbol{S}}^{\boldsymbol{H}}$$
(5)

where $\boldsymbol{U}_{s} \in \mathbb{C}^{2K \times L}$ is the left singular vector matrix, $\boldsymbol{V}_{s} \in$ $\mathbb{C}^{K \times L}$ is the right singular vector matrix, and $\Sigma_s \in \mathbb{C}^{L \times L}$ is a diagonal matrix of singular values. Furthermore, We define E_x and E_y to be the matrices

from rows 1 to K and from K + 1 to 2K of U_s , respectively, then

$$\boldsymbol{E}_{x} = \boldsymbol{A}\boldsymbol{T} \in \mathbb{C}^{K \times L}, \boldsymbol{E}_{y} = \boldsymbol{A}\boldsymbol{\Phi}\boldsymbol{T} \in \mathbb{C}^{K \times L}$$
(6)

where **T** is an *L*th-order regular matrix. If E_s is a $(K + 1) \times L$ signal subspace left singular vector matrix containing one virtual element of VESPA, then

[†]The author is with Nagoya Institute of Technology, Nagoyashi. Aichi, 466-8555 Japan.

$$\boldsymbol{E}_x = \boldsymbol{J}_1 \boldsymbol{E}_s, \quad \boldsymbol{E}_y = \boldsymbol{J}_2 \boldsymbol{E}_s \tag{7}$$

where, $J_1 = [I_L \mathbf{0}_{K \times 1}], J_2 = [\mathbf{0}_{K \times 1} I_L].$ Substituting equation (7) into equation (6), we obtain (8) $J_1 E_s \Psi = J_2 E_s, \Psi = T^{-1} \Phi T$

The SLS method [2] is applied to E_s , and the error ΔE_s and Ψ are calculated simultaneously. The DOA estimate for the *L*-wave is obtained from the fixed value of Ψ [2].

3. Performance Analysis by Simulation

Computer simulations of the DOA estimation were performed under the conditions shown in Table 1. The methods compared are the conventional method of TLS-VESPA, and the proposed method of SLS-VESPA, evaluated by RMSE (Root Mean Square Error). Fig. 1 shows the SNR characteristics of RMSE. From Fig. 1, we can see that the performance of SLS-VESPA improves significantly compared to TLS-VESPA.

4. Conclusion

It is shown that SLS-VESPA applying the SLS method [2] enhances the performance.

References

- [1] E. Gönen, et al., IEEE Trans. on Signal Processing, Vol.45, No.9, pp.2265-2276, Sep. 1997. .
- [2] M. Haardt, IEEE Trans. on Signal Processing, Vol.45, No.3, pp.792-799, Mar. 1997.

Table 1 Simulation conditions

Table 1 Simulation conditions.			
Number of elements	6	Signal modulation	BPSK
Number of waves	2	Number of snapshots	1000
DOAs	(0°, 30°)	Number of trials	500
Input powers	(1.0, 1.0)	SNR	-10~30 [dB]

Fig. 1 RMSE of DOA estimates versus SNR.