
An Efficient Hardware Architecture for Calculating the Minimum SAD with

Parallel Execution at the Search Point Level

Tae Sung Kim1, Hyuk-Jae Lee2, and Chae Eun Rhee3
1, 2 Department of Electrical Engineering and Computer Science,

Interuniversity Semiconductor Research Center, Seoul National University

1 Kwanak-ro, Kwanak-gu, Seoul, 08826, Korea
3 Department of Information and Communication Engineering, Inha University

100 Inha-ro, Nam-gu, Incheon, 22212, Korea

E-mail: 1tskim@capp.snu.ac.kr, 2hyuk_jae_lee@capp.snu.ac.kr, 3chae.rhee@inha.ac.kr

Abstract: Integer Motion Estimation (IME) is one of the

key components of video coding standard such as high-

efficiency video coding (HEVC). As HEVC adopts a highly

flexible block partitioning structure from 4x4 to 64x64,

performing IME for every block partition demands

considerable computational complexity. Although a number

of previous works for efficient hardware architectures to

accerarate IME have been done, the computational

complexity of IME keeps growing as the video resolution

increases. In this paper, an efficient hardware architecture

for calculating the minimum SAD is proposed. The

proposed hardware exploits the parallelism of multiple

search points. To improve the efficiency of the proposed

hardware, SAD calculation and its comparison steps are

performed in a pipelined manner and the workload between

the two pipeline stages are finely balanced. The proposed

hardware processes 32 search points for an 8x8 block. The

gate count is 827 K and the maximum operating clock

frequency is 485.44 MHz.

Keywords-- Video compression, High-efficiency video

coding (HEVC), Integer motion estimation (IME),

Sum of absolute diffference (SAD), Hardware

architecture

1. Introduction

Motion estimation (ME) is very important to achieve

efficient video coding performance. High-Efficiency Video

Coding (HEVC) is a video coding standard that has been

finalized in 2013 by the joint collaborative team on video

coding (JCT-VC) [1]. To improve the coding efficiency

offered by H.264/advanced video coding (AVC), HEVC

adopts a highly flexible block partitioning structure and

fractional sample interpolation with quarter-sample

precision for motion compensated inter frame prediction [2].

Therefore, searching accurate motion vectors (MVs) for all

block partitions is essential to achieve maximum coding

efficiency of HEVC. Integer motion estimation (IME) is the

process for finding coarse motion in an integer pixel unit,

whereas fractional motion estimation (FME) is for finding

motion more precisely up to a 1/4 pixel unit. The block

partitioning structure adopted in HEVC includes a coding

tree unit (CTU), a coding unit (CU) and a prediction unit

(PU). One slice is partitioned into multiple CTUs as the

basic processing unit instead of an MB in H.264/AVC.

Unlike an MB of which the size is fixed as 16×16 pixels,

the size of the CTU is not fixed, varying from 16×16 to

64×64. A CTU can be split, forming a quad-tree structure

with a leaf on the tree referred to a CU. For a CU, either the

inter- or the intra-prediction mode is determined. A CU

consists of multiple PUs. Different predicted blocks are

generated for different PUs, which improve the prediction

accuracies of the original pixels. Each PU has its unique

MV.

The most popular technique for ME is the block-matching

algorithm (BMA) [3]. Especially, BMA with a SAD

comparison is used for simple implementation of IME. For

a hardware-based IME, a sum of absolute difference (SAD)

tree is widely used for high throughput [4]. The SAD tree

architecture generates SAD costs of different block

partitions at a particular search point simultaneously by the

combination of small partitions, thereby providing the high

degree of parallelism and achieving high speed IME.

However, the computational complexity increases as video

resolution increases so that the complexity of IME for high-

definition videos which has resolution of 4k or 8k is now

uncontrollable with only traditional techniques. To

overcome the increase in computational complexity, many

previous research works attempt to devise various hardware

architectures for calculating the minimum SAD [5]-[9].

However, it is not sufficient to cover the increased

computational complexity for 4k resolution or larger

resolution. Therefore, latest research works attempt to use

fast algorithms for a hardware-based IME [10], [11].

However, it is difficult to apply various fast IME

algorithms to the IME hardware which processes multiple

block partitions in parallel such as a SAD tree because most

fast IME algorithms assume the sequential IME processing

block by block to obtain additional information. For

example, in HEVC test model (HM) reference SW, test

zone search (TZS) algorithm observes MVs of neighboring

PUs [12], [13].

In this paper, to improve performance of hardware-based

IME more effectively, the parallel execution of IME at the

search point level is proposed. The proposed hardware

architecture supports sequential processing between

different block partitions, thereby having a chance of

reducing computational complexity of IME by adopting

various fast IME algorithms. To achieve high throughput,

the minimum SAD is calculated in the pipelined manner

with a fine workload balancing between pipeline stages.

The rest of this paper is organized as follows. The proposed

hardware architecture is explained in Section 2. The

implementation result and design comparisons are given in

Section 3. Section 4 concludes the paper.

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

193

2. Proposed Hardware Architecture

To achieve a high degree of parallelism along with fast

algorithms, the paper presents efficient hardware

architecture of calculating the minimum SAD. One of the

significant differences between the conventional SAD tree

and the proposed hardware is that the SAD tree processes

multiple blocks for a single search point at a time, whereas

the proposed hardware processes multiple search points for

a particular block at a time. Figure 1 shows the steps of

calculating the minimum SAD in the proposed hardware

architecture. All CUs in a CTU are processed sequentially

one by one. PUs in a CU are processed in parallel as like a

SAD tree. M denotes the number of search points examined

in a cycle, whereas N denotes width and height of a CU.

Therefore, MN2 represents a pixel capability per cycle in

calculating SAD. For the proposed hardware architecture,

MN2 is set to 2,048 where the SADs of 2,048 pixels are

calculated in a cycle. To support various block partition

sizes of HEVC, N can be 8, 16 or 32. Thus, the

corresponding M can be 32, 8 or 2, respectively. For

example, if N is 8 then M is 32. In this case, the proposed

hardware examines 32 search points for an 8x8 CU in a

cycle. For a 64x64 CU, the operation of 32x32 CU is

performed in four times iteratively. The proposed hardware

is divided into two pipeline stages. In the first step, the

absolute difference and its sum for each search point are

calculated. In the second step, the SAD values of search

points are compared to find the search point which has the

smallest SAD value. This is chosen as the best MVs of the

current CU. Note that, the conventional SAD tree needs to

compare the SAD values between the previous smallest one

and the current one, whereas the proposed hardware needs

to compare the SAD values among N search points in

addition to the previous smallest one as shown in Figure 1.

Figure 2 shows the maximum path delay of different block

partitions. The numbers in light gray and dark gray boxes

represent the path delay for SAD calculation and

comparison, respectively. The path delay of SAD

calculation step is proportional to the size of block partition.

It is reasonable because the number of additions increases

as the size of block partition increases. On the other hand,

the path delay of comparison and the size of block partition

are in inverse proportion to each other. As explained in

Figure 1, MN2 is fixed and thus, the number of search

points M to be examined and the number of comparison

among search points become small for the large size of

block partition. Based on this observation, the workload of

each block partition is distributed evenly to two pipeline

stages. For an 8x8 CU, 8x8 SAD calculations and the

comparison to choose 16 MVs among 32 MVs are assigned

to the first stage, whereas the comparison for the remaining

16 MVs are done in the second stage. For a 64x64 CU, four

32x32 SAD calculations are performed in the first stage.

After that, four 32x32 SAD values are accumulated and the

comparison is done in the second stage. For 16x16 and

32x32 CUs, SAD calculation and comparison are assigned

to the first and second stages, respectively.

3. Implementation Result and Design

Comparison

3. 1 Hardware implementation

Figures 3 (a) and (b) illustrate the method to calculate the

SAD of each size in the adder tree. The solid rectangles

illustrate the PUs which are currently calculating SAD

values, whereas the dotted rectangles illustrate the SADs

which have been already calculated in the lower level adder

tree. The dotted rectangles in white, light gray, dark gray

and black denote the SADs from the four positions of one

level lower adder tree. Figure 3 (a) shows the method for an

8x8 adder tree. Because an 8x8 CU has no AMP, only three

SADs for 2Nx2N, 2NxN and Nx2N PUs are calculated

using four 4x4 SADs. To use the current SAD for the upper

level, all calculated SADs are transmitted to the upper level

adder tree, i.e. a 16x16 adder tree. Figure 3 (b) shows the

method for 16x16, 32x32, and 64 x 64 adder trees. SADs

Absolute

Difference

Adder

Tree
Comparison

Org

Ref

MN2

MN2
MN2 M

SADMIN

1st: SAD Calculation 2nd: Comparison

Figure 1. Steps of calculating the minimum SAD in the

proposed hardware architecture

2.81 5.498×8 CU

(ns)

3.15 3.9216×16 CU

3.42 2.3832×32 CU

3.89 1.8264×64 CU

SAD Calculation Comparison

Figure 2. Maximum path delay of different block

partitions with parallel execution at the search point

level

2Nx2N 2NxN Nx2N

NxN NxN

NxN NxN

NxN NxN

NxN NxN

NxN NxN

NxN NxN

to upper level

(a)

2NxnU 2NxnD nLx2N nRx2N

2Nx2N 2NxN Nx2N

NxN NxN

NxN NxN

NxN NxN

NxN NxN

NxN NxN

NxN NxN

NxN

NxN

N
/2

x
N

N
/2

x
N

N
/2

x
N

N
/2

x
N

NxN

NxN

N
/2

x
N

N
/2

x
N

N
/2

x
N

N
/2

x
N

NxN NxN

NxN NxN
NxN/2 NxN/2

NxN/2 NxN/2

NxN/2 NxN/2

NxN/2 NxN/2

to upper level

(b)

Figure 3. (a) The method of SAD calculation for an 8x8

adder tree (N=4), (b) the method of SAD calculation for

64x64, 32x32, 16x16 adder trees (N=32, 16, 8)

194

for 2Nx2N, 2NxN, Nx2N, 2NxnU, 2NxnD, nLx2N and

nRx2N PU are calculated with NxN, NxN/2 and N/2xN

SADs which are from four lower level adder trees. To

calculate the SAD of AMP, not only 2Nx2N but also

NxN/2 and N/2xN SADs are necessary. For example, to

calculate SAD for a 32x24 PU, two 16x16 SADs and two

16x8 SADs are needed.

Figure 4 shows the proposed hardware architecture. The

light gray region denotes the first pipeline stage, whereas

the dark gray region denotes the second pipeline stage. To

get the absolute difference between the original and

reference pixels, 2,048 absolute difference units are used.

After calculating the absolute differences for all pixels, the

differences are added up by a 4x4 unit to supply an 8x8

adder tree (AT) with 4x4 SADs. While the calculated SADs

in each level of AT are transferred to the upper level of AT

hierarchically, SADs are added up in the current level as

shown in the Figures 3 (a) and (b). The proposed hardware

has 32 8x8 ATs, 8 16x16 ATs, 2 32x32 ATs. There is an

accumulator to add up the results from 32x32 ATs to

calculate 64x64 CU’s SAD. A 32 to 16 comparator array

and a 16 to 1 comparator array are used to get the minimum

SAD. Note that, to support the proposed workload

balancing which is presented in Section 2, the comparison

operations are distributed in two pipeline stages and the

accumulation operation for SAD calculation of a 64x64 CU

is performed in the second stage.

Table 1 shows the gate count for each component in details.

The left column shows the component, whereas the right

column shows the corresponding gate count. Each

component name matches the hardware modules shown in

Figure 4. Over 90% of gates are occupied by absolute

difference, adder tree and accumulator components. Two

comparator arrays which are used to support the search

point-level parallel IME account for just 8.7% in total gate

counts.

3. 2 Design comparison

The proposed hardware architecture for calculating the

minimum SAD is implemented in Verilog HDL and

synthesized by Synopsys design compiler. The 65 nm

CMOS technology with a supply voltage of 1.2V is used.

Table 2 shows the implementation results of two different

designs. The second column shows the 2-stage pipeline

without workload balancing, whereas the third column

shows the design with the proposed workload balance. The

maximum operating clock frequency of each design is

359.71 MHz and 485.44 MHz, respectively. The proposed

hardware architecture shows 35% higher operating clock

frequency than the other design. Even though the proposed

hardware architecture uses little bit more hardware resource

than that without workload balancing in the third row, the

throughput and efficiency are improved as shown in the

fourth and fifth rows.

4. Conclusions

The main contribution of this paper is that it raises an issue

about the limitation of a traditional hardware-based IME

architecture and proposes the new hardware architecture

exploiting parallelism in multiple search points. The

proposed hardware can adopt fast IME algorithms that are

based on the sequential processing order among different

block partitions, and therefore it is beneficial in both ways:

parallelism and fast algorithm. For future research, there

exist additional opportunities to improve the performance if

the fast IME algorithm is adopted for the proposed

hardware architecture.

Acknowledgement

This work was supported by the Ministry of Science, ICT

and Future Planning, Korea, through the Information

Technology Research Center under Grant IITP-2016-

H8501-16-1005 supervised by the Institute for Information

and Communications Technology Promotion, and by the

Basic Science Research Program through the National

Research Foundation of Korea within the Ministry of

Science, ICT and Future Planning under Grant NRF-

2015R1C1A1A02037625.

Table 2. Implementation result and design comparison

between the hardware architecture without and with

workload balancing

without

workload

balancing

with

workload

balancing

Maximum frequency (MHz) 359.71 485.44

Area (K Gates) 803.2 827.4

Throughput (search points per second) 1.15×109 1.55×109

Throughput per gate 1431.77 1873.34

Table 1. Gate counts of the hardware modules

Component Gate Count(K)

Absolute difference (×2,048) 380.3

Adder tree & accumulator 375.4

32 to 16 comparator 26.1

16 to 1 comparator 45.6

Total 827.4

2
,0

4
8
 o

f
ab

so
lu

te
 p

ix
el

 d
if

fe
re

n
ce

 &
 a

d
d
in

g
 u

p
 4

x
4
 u

n
it

16
AT 4

16
AT 7

8 AT 16
8 AT 17

8 AT 31
8 AT 32

16
AT 0

16
AT 1

16
AT 2

16
AT 3

8 AT 0
8 AT 1
8 AT 2
8 AT 3
8 AT 4
8 AT 5
8 AT 6
8 AT 7
8 AT 8
8 AT 9
8 AT 10
8 AT 11
8 AT 12
8 AT 13
8 AT 14
8 AT 15

32:16
Comparator

Array

8 AT 18

8 AT 30

A
cc

u
m

u
la

to
r

M
in

im
u
m

 S
A

D
s

fo
r

6
4
x

6
4
,
3
2
x

3
2
,
1
6
x

1
6
,
8
x

8
 C

U
s

1
6

:1
 C

o
m

p
ar

at
o

r
A

rr
ay

32
AT 1

32
AT 0

Figure 4. Proposed hardware architecture for

calculating minimum SAD

195

References

[1] G. J. Sullivan, J. Ohm , W.-J. Han, and T. Wiegand,

“Overview of the High Efficiency Video Coding (HEVC)

Standard,” IEEE Trans. on Circuits and Systems for

Video Technology, vol. 22, no. 12, pp.1649-1668, Dec

2012.

[2] I. K. Kim, J. Min, T. Lee, W.-J. Han, and J. Parkand,

“Block Partitioning Structure in the HEVC Standard,”

IEEE Trans. on Circuits and Systems for Video

Technology, vol. 22, no. 12, pp.1697-1706, Dec 2012.

[3] C.-H. Hsieh and T.-P. Lin, “VLSI architecture for

block-matching motion estimation algorithm,” IEEE

Trans. on Circuits and Systems for Video Technology, vol.

2, no. 2, pp.169-175, Jun 1992.

[4] C.-Y. Chen, S.-Y. Chien, T.-C. Chen, T.-C. Wang, and

L.-G. Chen, “Analysis and Architecture Design of

Variable Block-Size Motion Estimation for H.264/AVC,”

IEEE Trans. on Circuits and Systems, vol. 53, no. 3,

pp.578-593, Mar 2006.

[5] M. E. Sinagil, V. Sze, Minhua Zhou, and A. P.

Chandrakasan, “Cost and Coding Efficient Motion

Estimation Design Considerations for High Efficiency

Video Coding (HEVC) Standard,” IEEE Journal. Selected

Topics in Signal Processing, vol. 7, no. 6, pp.1017-1028,

Jul 2013.

[6] S.-Y. Jou, S.-J. Chang, and T.-S. Chang, “Fast Motion

Estimation Algorithm and Design for Real Time QFHD

High Efficiency Video Coding,” IEEE Journal. Selected

Topics in Signal Processing, vol. 25, no. 9, pp.1533-1544,

Jul 2013.

[7] JCT-VC, (2014, Jan.). High Efficiency Video Coding

Reference Software. High Efficiency Video Coding Test

Model 13 (HM13). [Online]. Available:

http://hevc.hhi.fraunhofer.de/

[8] N. Purnachand, L. N. Alves, and A. Navarro,

“Improvements to TZ search motion estimation algorithm

for multiview video coding,” in Proc. IWSSIP., Vienna,

Austria, 2012, pp. 388 - 391.

[9] Z. Liu, S. Goto, and T. Ikenaga, “Optimization of

Propagate Partial SAD and SAD Tree Motion Estimation

Hardwired Engine for H.264,” in Proc. ICCD., Lake

Tahoe, CA, USA, 2010, pp. 328 - 333.

[10] C. Diniz, G. Corrêa, A. Susin, and S. Bampi,

“Comparative Analysis of Parallel SAD Calculation

Hardware Architectures for H.264/AVC Video Coding,”

in Proc. LASCAS., Foz do Iguacu, Brazil, 2010, pp. 113 -

116.

[11] N. C. Vayalil, A. Safari, and Y. Kong, “ASIC Design

in Residue Number System for Calculating Minimum

Sum of Absolute Differences,” in Proc. ICCES., Cairo,

Egypt, 2015, pp. 129 - 132.

[12] P. Nalluri, L.N. Alves, and A. Navarro, “A Novel SAD

Architecture for Variable Block Size Motion Estimation

in HEVC Video Coding,” in Proc. International

Symposium on SoC., Tampere, Finland, 2013, pp. 129 -

132.

[13] A. Medhat, A. Shalaby, M. S. Sayed, M. Elsabrouty,

and F. Mehdipour, “A highly parallel SAD architecture

for motion estimation in HEVC encoder,” in Proc.

APCCAS., Ishigaki, Japan, 2014, pp. 280 - 283.

[14] Recommendation ITU-T H.265, MPEG H -- Part 2:

High efficiency video coding, ISO/IEC 23008-2, 2013.

196

