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Abstract: Integer Motion Estimation (IME) is one of the 

key components of video coding standard such as high-

efficiency video coding (HEVC). As HEVC adopts a highly 

flexible block partitioning structure from 4x4 to 64x64, 

performing IME for every block partition demands 

considerable computational complexity. Although a number 

of previous works for efficient hardware architectures to 

accerarate IME have been done, the computational 

complexity of IME keeps growing as the video resolution 

increases. In this paper, an efficient hardware architecture 

for calculating the minimum SAD is proposed. The 

proposed hardware exploits the parallelism of multiple 

search points. To improve the efficiency of the proposed 

hardware, SAD calculation and its comparison steps are 

performed in a pipelined manner and the workload between 

the two pipeline stages are finely balanced. The proposed 

hardware processes 32 search points for an 8x8 block. The 

gate count is 827 K and the maximum operating clock 

frequency is 485.44 MHz. 
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1.  Introduction 

Motion estimation (ME) is very important to achieve 

efficient video coding performance. High-Efficiency Video 

Coding (HEVC) is a video coding standard that has been 

finalized in 2013 by the joint collaborative team on video 

coding (JCT-VC) [1]. To improve the coding efficiency 

offered by H.264/advanced video coding (AVC), HEVC 

adopts a highly flexible block partitioning structure and 

fractional sample interpolation with quarter-sample 

precision for motion compensated inter frame prediction [2]. 

Therefore, searching accurate motion vectors (MVs) for all 

block partitions is essential to achieve maximum coding 

efficiency of HEVC. Integer motion estimation (IME) is the 

process for finding coarse motion in an integer pixel unit, 

whereas fractional motion estimation (FME) is for finding 

motion more precisely up to a 1/4 pixel unit. The block 

partitioning structure adopted in HEVC includes a coding 

tree unit (CTU), a coding unit (CU) and a prediction unit 

(PU). One slice is partitioned into multiple CTUs as the 

basic processing unit instead of an MB in H.264/AVC. 

Unlike an MB of which the size is fixed as 16×16 pixels, 

the size of the CTU is not fixed, varying from 16×16 to 

64×64. A CTU can be split, forming a quad-tree structure 

with a leaf on the tree referred to a CU. For a CU, either the 

inter- or the intra-prediction mode is determined. A CU 

consists of multiple PUs. Different predicted blocks are 

generated for different PUs, which improve the prediction 

accuracies of the original pixels. Each PU has its unique 

MV.  

The most popular technique for ME is the block-matching 

algorithm (BMA) [3]. Especially, BMA with a SAD 

comparison is used for simple implementation of IME. For 

a hardware-based IME, a sum of absolute difference (SAD) 

tree is widely used for high throughput [4].  The SAD tree 

architecture generates SAD costs of different block 

partitions at a particular search point simultaneously by the 

combination of small partitions, thereby providing the high 

degree of parallelism and achieving high speed IME. 

However, the computational complexity increases as video 

resolution increases so that the complexity of IME for high-

definition videos which has resolution of 4k or 8k is now 

uncontrollable with only traditional techniques. To 

overcome the increase in computational complexity, many 

previous research works attempt to devise various hardware 

architectures for calculating the minimum SAD [5]-[9]. 

However, it is not sufficient to cover the increased 

computational complexity for 4k resolution or larger 

resolution. Therefore, latest research works attempt to use 

fast algorithms for a hardware-based IME [10], [11]. 

However, it is difficult to apply various fast IME 

algorithms to the IME hardware which processes multiple 

block partitions in parallel such as a SAD tree because most 

fast IME algorithms assume the sequential IME processing 

block by block to obtain additional information. For 

example, in HEVC test model (HM) reference SW, test 

zone search (TZS) algorithm observes MVs of neighboring 

PUs [12], [13].  

In this paper, to improve performance of hardware-based 

IME more effectively, the parallel execution of IME at the 

search point level is proposed. The proposed hardware 

architecture supports sequential processing between 

different block partitions, thereby having a chance of 

reducing computational complexity of IME by adopting 

various fast IME algorithms. To achieve high throughput, 

the minimum SAD is calculated in the pipelined manner 

with a fine workload balancing between pipeline stages. 

The rest of this paper is organized as follows. The proposed 

hardware architecture is explained in Section 2. The 

implementation result and design comparisons are given in 

Section 3. Section 4 concludes the paper. 
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2.  Proposed Hardware Architecture 

To achieve a high degree of parallelism along with fast 

algorithms, the paper presents efficient hardware 

architecture of calculating the minimum SAD. One of the 

significant differences between the conventional SAD tree 

and the proposed hardware is that the SAD tree processes 

multiple blocks for a single search point at a time, whereas 

the proposed hardware processes multiple search points for 

a particular block at a time. Figure 1 shows the steps of 

calculating the minimum SAD in the proposed hardware 

architecture. All CUs in a CTU are processed sequentially 

one by one. PUs in a CU are processed in parallel as like a 

SAD tree. M denotes the number of search points examined 

in a cycle, whereas N denotes width and height of a CU. 

Therefore, MN2 represents a pixel capability per cycle in 

calculating SAD. For the proposed hardware architecture, 

MN2 is set to 2,048 where the SADs of 2,048 pixels are 

calculated in a cycle. To support various block partition 

sizes of HEVC, N can be 8, 16 or 32. Thus, the 

corresponding M can be 32, 8 or 2, respectively. For 

example, if N is 8 then M is 32. In this case, the proposed 

hardware examines 32 search points for an 8x8 CU in a 

cycle. For a 64x64 CU, the operation of 32x32 CU is 

performed in four times iteratively. The proposed hardware 

is divided into two pipeline stages. In the first step, the 

absolute difference and its sum for each search point are 

calculated. In the second step, the SAD values of search 

points are compared to find the search point which has the 

smallest SAD value. This is chosen as the best MVs of the 

current CU. Note that, the conventional SAD tree needs to 

compare the SAD values between the previous smallest one 

and the current one, whereas the proposed hardware needs 

to compare the SAD values among N search points in 

addition to the previous smallest one as shown in Figure 1. 

Figure 2 shows the maximum path delay of different block 

partitions. The numbers in light gray and dark gray boxes 

represent the path delay for SAD calculation and 

comparison, respectively. The path delay of SAD 

calculation step is proportional to the size of block partition. 

It is reasonable because the number of additions increases 

as the size of block partition increases. On the other hand, 

the path delay of comparison and the size of block partition 

are in inverse proportion to each other. As explained in 

Figure 1, MN2 is fixed and thus, the number of search 

points M to be examined and the number of comparison 

among search points become small for the large size of 

block partition. Based on this observation, the workload of 

each block partition is distributed evenly to two pipeline 

stages. For an 8x8 CU, 8x8 SAD calculations and the 

comparison to choose 16 MVs among 32 MVs are assigned 

to the first stage, whereas the comparison for the remaining 

16 MVs are done in the second stage. For a 64x64 CU, four 

32x32 SAD calculations are performed in the first stage. 

After that, four 32x32 SAD values are accumulated and the 

comparison is done in the second stage. For 16x16 and 

32x32 CUs, SAD calculation and comparison are assigned 

to the first and second stages, respectively. 

 

3.  Implementation Result and Design 

Comparison 

3. 1 Hardware implementation 

Figures 3 (a) and (b) illustrate the method to calculate the 

SAD of each size in the adder tree. The solid rectangles 

illustrate the PUs which are currently calculating SAD 

values, whereas the dotted rectangles illustrate the SADs 

which have been already calculated in the lower level adder 

tree. The dotted rectangles in white, light gray, dark gray 

and black denote the SADs from the four positions of one 

level lower adder tree. Figure 3 (a) shows the method for an 

8x8 adder tree. Because an 8x8 CU has no AMP, only three 

SADs for 2Nx2N, 2NxN and Nx2N PUs are calculated 

using four 4x4 SADs. To use the current SAD for the upper 

level, all calculated SADs are transmitted to the upper level 

adder tree, i.e. a 16x16 adder tree. Figure 3 (b) shows the 

method for 16x16, 32x32, and 64 x 64 adder trees. SADs 
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Figure 1. Steps of calculating the minimum SAD in the 

proposed hardware architecture 
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Figure 2. Maximum path delay of different block 

partitions with parallel execution at the search point 

level  
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Figure 3. (a) The method of SAD calculation for an 8x8 

adder tree (N=4), (b) the method of SAD calculation for 

64x64, 32x32, 16x16 adder trees (N=32, 16, 8) 
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for 2Nx2N, 2NxN, Nx2N, 2NxnU, 2NxnD, nLx2N and 

nRx2N PU are calculated with NxN, NxN/2 and N/2xN 

SADs which are from four lower level adder trees. To 

calculate the SAD of AMP, not only 2Nx2N but also 

NxN/2 and N/2xN SADs are necessary. For example, to 

calculate SAD for a 32x24 PU, two 16x16 SADs and two 

16x8 SADs are needed. 

Figure 4 shows the proposed hardware architecture. The 

light gray region denotes the first pipeline stage, whereas 

the dark gray region denotes the second pipeline stage. To 

get the absolute difference between the original and 

reference pixels, 2,048 absolute difference units are used. 

After calculating the absolute differences for all pixels, the 

differences are added up by a 4x4 unit to supply an 8x8 

adder tree (AT) with 4x4 SADs. While the calculated SADs 

in each level of AT are transferred to the upper level of AT 

hierarchically, SADs are added up in the current level as 

shown in the Figures 3 (a) and (b). The proposed hardware 

has 32 8x8 ATs, 8 16x16 ATs, 2 32x32 ATs. There is an 

accumulator to add up the results from 32x32 ATs to 

calculate 64x64 CU’s SAD. A 32 to 16 comparator array 

and a 16 to 1 comparator array are used to get the minimum 

SAD. Note that, to support the proposed workload 

balancing which is presented in Section 2, the comparison 

operations are distributed in two pipeline stages and the 

accumulation operation for SAD calculation of a 64x64 CU 

is performed in the second stage. 

Table 1 shows the gate count for each component in details. 

The left column shows the component, whereas the right 

column shows the corresponding gate count. Each 

component name matches the hardware modules shown in 

Figure 4. Over 90% of gates are occupied by absolute 

difference, adder tree and accumulator components. Two 

comparator arrays which are used to support the search 

point-level parallel IME account for just 8.7% in total gate 

counts. 

 

3. 2 Design comparison 

The proposed hardware architecture for calculating the 

minimum SAD is implemented in Verilog HDL and 

synthesized by Synopsys design compiler. The 65 nm 

CMOS technology with a supply voltage of 1.2V is used. 

Table 2 shows the implementation results of two different 

designs. The second column shows the 2-stage pipeline 

without workload balancing, whereas the third column 

shows the design with the proposed workload balance. The 

maximum operating clock frequency of each design is 

359.71 MHz and 485.44 MHz, respectively. The proposed 

hardware architecture shows 35% higher operating clock 

frequency than the other design. Even though the proposed 

hardware architecture uses little bit more hardware resource 

than that without workload balancing in the third row, the 

throughput and efficiency are improved as shown in the 

fourth and fifth rows. 

 

4.  Conclusions 

The main contribution of this paper is that it raises an issue 

about the limitation of a traditional hardware-based IME 

architecture and proposes the new hardware architecture 

exploiting parallelism in multiple search points. The 

proposed hardware can adopt fast IME algorithms that are 

based on the sequential processing order among different 

block partitions, and therefore it is beneficial in both ways: 

parallelism and fast algorithm. For future research, there 

exist additional opportunities to improve the performance if 

the fast IME algorithm is adopted for the proposed 

hardware architecture. 
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Table 2. Implementation result and design comparison 

between the hardware architecture without and with 

workload balancing  

without 

workload

balancing

with 

workload 

balancing

Maximum frequency (MHz) 359.71 485.44

Area (K Gates) 803.2 827.4

Throughput (search points per second) 1.15×109 1.55×109

Throughput per gate 1431.77 1873.34  

Table 1. Gate counts of the hardware modules  

Component Gate Count(K)

Absolute difference (×2,048) 380.3

Adder tree & accumulator 375.4

32 to 16 comparator 26.1

16 to 1 comparator 45.6

Total 827.4  

2
,0

4
8
 o

f 
ab

so
lu

te
 p

ix
el

 d
if

fe
re

n
ce

 &
 a

d
d
in

g
 u

p
 4

x
4
 u

n
it

16
AT 4

16
AT 7

8 AT 16
8 AT 17

8 AT 31
8 AT 32

16
AT 0

16
AT 1

16
AT 2

16
AT 3

8 AT 0
8 AT 1
8 AT 2
8 AT 3
8 AT 4
8 AT 5
8 AT 6
8 AT 7
8 AT 8
8 AT 9
8 AT 10
8 AT 11
8 AT 12
8 AT 13
8 AT 14
8 AT 15

32:16
Comparator 

Array

8 AT 18

8 AT 30

A
cc

u
m

u
la

to
r

M
in

im
u
m

 S
A

D
s 

fo
r 

6
4
x

6
4
, 
3
2
x

3
2
, 
1
6
x

1
6
, 
8
x

8
 C

U
s

1
6

:1
 C

o
m

p
ar

at
o

r 
A

rr
ay

32
AT 1

32
AT 0

 
Figure 4. Proposed hardware architecture for 

calculating minimum SAD 
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