
Efficient Schemes for Bypass Flag Read and Write for 1-D Lossless Frame Memory 

Compression in the Hardware-based Video Encoder 
 

Ji Hun Jang1 and Chae Eun Rhee2 
1, 2 Department of Information and Communication, Inha University 

Yong hyun-dong 253, Nam-gu, Incheon, Republic of Korea 

E-mail: 1jhjang@inha.edu, 2chae.rhee@inha.ac.kr 

 

Abstract:    The frame memory compression (FMC) is one 

of solutions to mitigate the memory size and bandwidth 

burdens for the reference frames used in the inter-prediction. 

The lossless FMC keeps the image quality, whereas the 

compression ratio is not guaranteed. In the worst case, the 

required memory size with FMC is more than that without 

FMC. To manage this case, the encoding step can be 

bypassed and the uncompressed data are stored with bypass 

flags. Mostly, the overhead from bypass flags depends on 

the size of compression units. However, if the bypass flags 

are stored to the external memory and writing and reading 

are done through the system bus, the trade-off between 

internal memory space and bus bandwidth needs to be 

considered carefully. In this paper, the schemes for bypass 

flag read and write are proposed to reduce the bandwidth 

effectively with a reasonable internal memory overhead. 

 

Keywords—Bypass flag, Frame memory compression, 

Video codec, system bus, memory bandwidth  
 

 

1.  Introduction 

Most video coding standards adopt inter-prediction which 

exploits temporal redundancy between frames to improve 

coding efficiency where previous encoded frames should be 

stored for the reference. Accordingly, the memory access 

bandwidth to read and write reference frames also 

significantly increases [1]. The frame memory compression 

(FMC) can be one of solutions to mitigate the memory size 

and memory bandwidth burdens. The FMC encodes the 

reference frames before storing to the frame memory and 

thus, the memory size as well as the memory bandwidth is 

reduced. There are two types of the FMC, lossy and lossless 

approaches. The lossy FMC compresses the frame with the 

target compression ratio by discarding some data. Both 

memory size and bandwidth are reduced at the sacrifice of 

data loss. On the contrary, the lossless FMC compresses the 

frame without loss. The frame image quality is kept but the 

compression ratio is not guaranteed. In the worst case, the 

required memory size with FMC is more than that without 

FMC. For FMC, various compression algorithms are used 

depending on applications and system requirements. To 

avoid the additional memory usage, schemes to remove 

temporal redundancy are not used. 

Set partitioning in hierarchical trees (SPIHT) [2] is one of 

the lossless compression schemes and is frequently used for 

FMC. No-list SPIHT (NLS) is the modified design for 

hardware implementation [3]. When the NLS is used for 

FMC, the compressed data size happens to be 56% larger 

than the uncompressed data size in some cases. To manage 

this case, the encoding step can be bypassed. In other words, 

not the compressed data but the uncompressed data are 

stored when the compressed data increases during NLS. 

Consequently, even in the worst case, the required memory 

size does not increase. In the decoding step of FMC, the 

decoder needs to distinguish the bypassed data from the 

compressed data. Thus, for every compression unit, 1 bit 

bypass flag is used to tell whether the current unit is 

compressed or not. The decoder accepts both data and a 

bypass flag. If the bypass flag=1, a decoding step is skipped. 

To apply this bypass option, the memory space for bypass 

flags is additionally required. However, considering the 

worst case such as 56% increase in data size, the memory 

overhead caused by bypass flags is small. The overhead 

from bypass flags is different depending on the 

compression unit. Table 1 shows the required memory size 

depending on whether or not the bypass scheme is used. 

Four frames of YUV420 videos with a resolution of 

3840x2160 are encoded. The second row represents the 

memory size for the compressed data, whereas the third 

row represents the memory size for the bypass flag. Both 

assume the worst cases. Compared to the original NLS 

without a bypass scheme in the second column, the required 

memory size with a bypass scheme is much less even 

including the space for the bypass flag as shown from third 

to seventh columns. In the third and fourth columns, the 

compression unit is a 2-dimentional (2-D) block where the 

compression unit is relatively large. Thus, the additional 

space for bypass flags is quite marginal. However, in the 

case of 1-dimentional (1-D) compression from fifth to 

seventh column, the spaces for bypass flags are 48.6 Kbyte, 

194.4 Kbyte and 777.6 Kbyte for 128, 32 and 8 pixel 

compression unit, respectively. Compared to 2D 

compression, the space for bypass flags is too large to store 

in the internal memory. If the bypass flags are stored to the 

external memory, writing and reading through the system 

bus are carefully designed considering the trade-off 

between the internal memory space and bandwidth 

overhead. 

 

Table 1 Required Memory size 

 

 
Original 

NLS 

Compression Unit size(pixels) 

2D 1D 

32x32 16x16 128x1 32x1 8x1 

Compressed 

Data 

(Mbyte) 

77.6 49.8 49.8 49.8 49.8 49.8 

Bypass flag 

(Kbyte) 
0 6.1 24.3 48.6 194.4 777.6 

 

 

The 31st International Technical Conference on Circuits/Systems,
                    Computers and Communications (ITC-CSCC 2016)

185



2.  Proposed Bypass Flag Read and Write 

Schemes 

In this paper, the system-level trade-off is analyzied to read 

and write bypass flags considering communication through 

bus, inernel memory size and bus bandwidth. Given the 

system constraints, the efficient read/write scheme for 

bypass-flags is proposed. 

 

2. 1 System environment 

Figure 1 shows the system environment assumed in this 

paper. The camera module accepts the video. YUV 

components of images are transmitted to the 1-D FMC 

encoder module in a raster-scan order via an AXI bus. In 

the 1-D FMC encoder, the image is encoded with a 32-pixel 

unit using SPIHT algorithm. The compressed data along 

with a bypass flag are written to the external memory 

through an AXI bus. Now, a codec module reads these 

input video to encode where 32x32 pixels data needs to be 

read since most video codecs encode data in a 2-D block-

based manner. The 1-D FMC decoder checks the requests 

and the address from a codec and then reads the 

compressed data and bypass flags from the external 

memory. If the bypass flag is turned on, the decoding 

process is performed and the uncompressed data are 

transferred to the codec. Otherwise, the read data from the 

external memory are directly transferred to the codec 

without decoding. The AXI bus with a 128 bit data width is 

used and the random read and write of Y, U and V 

components are assumed.  

In the codec system shown in Figure 1, system level factors 

need to be considered in addition to compression efficiency. 

In most cases, the camera module accepts the video in a 

raster scan order. Naturally, bypass flags are generated in 

an 1-D order while 1-D FMC encoding. If the codec reads 

the compressed data in an 1-D order, bypass flags stored in 

1-D order can be read and used on the fly. However, most 

modern codecs perform a block-based coding to increase 

the compression efficiency and thus, bypass flags should be 

provided to an encoder in a 2-D order. It means that a 

mismatch occurs between memory access units of reading 

and writing. To cope with this mismatch, bypass flags 

stored in an 1-D order should be read from memory as 

much as height of the block which is used in the codec. If 

this multiple lines of bypass flags are stored temporarlly 

inside the FMC decoder, quite large internal memory is 

required. Otherwise, the FMC decoder needs to read bypass 

flags repeatedly and thus the bus bandwidth can be 

increased significantly. 

 
Figure 1. System environment 

2. 2 Efficient Write Scheme 

During FMC encoding, if 1 bit bypass flag for each 

compression unit is stored every time to the external 

memory through the bus with a 128 bit width, 127 bits 

among 128 bits are dummy bits. This is a significant waste 

of bus bandwidth. If 128 bypass flags which correspond to 

one pixel line of a 4k size frame are stored in the internal 

memory temporarily and then transferred to the external 

memory, the bus bandwidth is reduced. To do this, the 128 

bit size internal memory is additionally required. If the 

random inputs of Y, U and V components should be 

supported like a system environment explained in Figure 1, 

256(128+64+64) bit size internal memory is necessary. In 

other words, there is a trade-off between the internal 

memory size and the bus bandwidth. This trade-off is 

shown in Figure 2. It is assumed that the video size is 

3840x2160 and its frame rate is 30 fps. The random input 

of YUV420 is supported. The horizontal axis represents the 

internal memory size, whereas the vertical axis represents 

the required bus bandwidth which depends on the internal 

memory size. For the bypass flag write, both input and 

output of the FMC encoder are 1-D and the encoding is 

performed on the fly. Thus, the required internal memory 

size is not so large. 

 
Figure 2. Trade off between Memory Size and 

Bandwidth in Write Process 

 

2. 3 Efficient Read Scheme 

For the bypass flag read, the codec wants to read data with 

a 32x32 block unit. For a 32x32 block decoding, the bypass 

flag for a 32-pixel unit should be read 32 times. 

Considering Y, U and V components, 64-time read access 

are required for each 32x32 block. To save the bus 

bandwidth, the bypass flags corresponding to 32 pixel lines 

of a frame can be stored in the internal memory in the 

similar way with the proposed bypass flag write scheme. 

For a YUV420 format, the bypass flags for 64 (32+16+16) 

pixel lines need to be stored. One pixel line of 4k size 

frames with a 32 compression unit needs 128 bypass flags. 

Thus, the required internal memory size comes to 8,192 

(128 x 64) bits. Here, the trade-off occurs between the 

internal memory size and the bus bandwidth as shown in 

Figure 3. In Figure 3, the horizontal axis represents the 

internal memory size, whereas the vertical axis represents 

the required bus bandwidth. The 3840x2160 resolution, 30 

fps and YUV420 format are assumed. If 8192 bit size 

internal memory is used, the bandwidth is just 2.07 Mbyte/s. 

186



If the 256 bit size internal memory (4x64) is used, only 4 

bits of 128 bit bus width are stored and other 124 bits are 

discarded when one read access. After using 4 bit bypass 

flags which covers 128 pixels corresponding to four 

compression units, another memory accesses are required 

for bypass flags which are read and discarded before. In this 

case, the internal memory size is small but the required 

bandwidth is 46.66Mbyte/s. 

0

10

20

30

40

50

256 512 1024 2048 4096 8192B
a

n
d

w
id

th
(M

B
y

te
s/

se
c)

Memory Size(bits)
 

Figure 3. Trade off between Memory size and 

Bandwidth in Read Process 

 

 

3.  Experimental results 

In this paper, considering the trade-off between the internal 

memory size and the bus bandwidth, 256 bits size and 2048 

bits size internal memories are chosen for bypass flag write 

and read accesses. For experiments, Discrete Wavelet 

Transform (DWT) and SPIHT are used for FMC. As shown 

in Figure 4, DWT module and SPIHT module are in FMC 

encoder, whereas Inverse SPIHT (ISPIHT) module and 

inverse DWT (IDWT) module are in FMC decoder. After 

DWT transforms input data into a wavelet image, the 

wavelet image is compressed by SPIHT.  Decoding process 

is reverse of the encoding process [4]. The compression 

unit of SPIHT is 32x1 pixels and DWT is performed by 2 

levels. 

 

 
Figure 4. Architecture of FMC encoder/decoder 

 

Table 2 shows the bandwidth required in system 

environment shown in Figure 1. The first and second 

columns represent resolutions and used video sequences, 

respectively. The third column represents the amount of 

compressed data from DWT+SPIHT encoding. It is just the 

output of the FMC encoder regardless of the assumed 

system environment. The fourth column denotes the 

bandwidth for bypass flags obtained by the proposed 

scheme in Section 2 The fifth column shows a bandwidth 

overhead caused by bypass flags read and write. Since 128 

bit width bus is used and a bypass flag is generated every 

32x1 pixels, the bandwidth required for bypass flags 

becomes minimum at an image width of 4096 (32x128) 

pixels. In Table 2, the bandwidth overhead is smallest at an 

image width of 3840. The smaller the width is, the greater 

the bandwidth overhead gets due to a lot of dummy bits.  
 

Table 2 Bandwidth overhead caused by bypass flag 

when the proposed scheme is used  

 

Resolution 
Video 

Sequence 

Bandwidth 

(Mbytes/frame) 
Bandwidth 

Overhead 

(%) 
Compressed 

Data 

Bypass 

Flag 

3840x2160 PeopleOnStreet 7.45 0.28 3.8 

3840x2048 Traffic 6.86 0.26 3.8 

1920x1080 BQTerrace 2.25 0.09 4.0 

1920x1080 Kimono1 1.79 0.09 5.0 

1920x1080 ParkScene 1.98 0.09 4.5 

1280x720 Johnny 0.79 0.06 7.6 

 

Table 3 shows the bandwidth according to the bus width 

and a video resolution in the system environment of Figure 

1. The first column denotes the resolution of test videos. 4k 

(3840x2160) and 2k (1920x1080) videos are used because 

the FMC is likely to be used for high resolution videos. The 

second column denotes the bus width where 256, 128 and 

64 bits bus widths are used. The third and fourth columns 

represent the average amount of compressed data from 

FMC encoding and the bandwidth for bypass flags, 

respectively. The fifth column shows the average 

bandwidth overhead due to the bypass flags. In Table 3, 

only bus width has been changed, whereas the internal 

memory size of FMC modules is same. Since the size of 

memory is chosen for 128 bits bus width, the bandwidth 

overhead is quite large in case of 256 bit bus width. The 

bypass flag overheads are 7.9% and 17% at 4k and 2k 

resolutions, respectively. If the FMC module reads bypass 

flags for 2k videos through 256 bits bus, the overhead is 

large because almost 76% bandwidth is occupied by 

dummy bits. To avoid this high rate of dummy bits, in 256 

bit bus system, it is necessary to store bypass flags as much 

as 256 bits by using additional internal memory. From this 

observation, it is apparent that the size of internal memory 

should be determined in consideration of both the video 

resolution and the system bus width. 

 

Table 3 Bandwidth overhead according to the bus width  

and video resolution 

 

Resolution 

Bus  

width 

(bit) 

Average bandwidth  

(Mbytes/frame) 
Average 

bandwidth 

overhead 

(%) 
Compressed  

Data 

Bypass 

Flag 

4k 

256 

7 

0.55 7.9 

128 0.28 4.0 

64 0.15 2.1 

2k 

256 

2 

0.34 17.0 

128 0.09 4.5 

64 0.04 2.0 

187



4.  Conclusion 
 

In this paper, efficient bypass flag write/read scheme is 

proposed by considering the system level environment and 

analyzing the trade-off of various factors such as a bus 

width, the size of access unit, and the size of additional 

memory. The bandwidth required to read/write compressed 

data can be very different from the actual amount of 

compressed data depending on the read/write schemes 

through a system bus. If the further research is conducted, it 

is expected to get the bandwidth closer to the ideal 

compression ratio of the FMC module. 

  

Acknowledgement 

This work was supported by the Ministry of Science, ICT 

and Future Planning, Korea, through the Information 

Technology Research Center under Grant IITP-2016-

H8501-16-1005 supervised by the Institute for Information 

and Communications Technology Promotion, and by the 

Basic Science Research Program through the National 

Research Foundation of Korea within the Ministry of 

Science, ICT and Future Planning under Grant NRF-

2015R1C1A1A02037625. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

[1] Ma, Yanzhuo, and Lijuan Kang. "Adaptive Granularity 

selection in Reference Picture Memory Compression." 

(2015). 

[2] Said, Amir, and William A. Pearlman. "A new, fast, and 

efficient image codec based on set partitioning in 

hierarchical trees." Circuits and Systems for Video 

Technology, IEEE Transactions on 6.3 (1996): 243-250. 

[3] Wheeler, Frederick W., and William A. Pearlman. 

"SPIHT image compression without lists." Acoustics, 

Speech, and Signal Processing, 2000. ICASSP'00. 

Proceedings. 2000 IEEE International Conference on. Vol. 

6. IEEE, 2000. 

[4] Kim, Sunwoong, et al. "A High-Throughput Hardware 

Design of a One-Dimensional SPIHT Algorithm." (2015). 

188


