
Automating Web-based Infrastructure Management
via Contextual Imitation Learning

Jieyu Lin∗
Electrical and Computer Engineering

University of Toronto
Toronto, Canada

jieyu.lin@utoronto.ca

Hongxiang Geng∗
Electrical and Computer Engineering

University of Toronto
Toronto, Canada

kevin.geng@mail.utoronto.ca

Alberto Leon-Garcia
Electrical and Computer Engineering

University of Toronto
Toronto, Canada

alberto.leongarcia@utoronto.ca

Abstract—Web-based management dashboards provide intu-
itive interfaces to support various infrastructure management
tasks. However, the lack of programmability in these dashboards
makes it difficult to automate management tasks. To address
this limitation, we propose a system call MAIL (Management
Automation through Imitation Learning) that learns from an
operator’s demonstrations using imitation learning to automate
management tasks on web-based dashboards. A novel Contextual
Imitation Learning algorithm is proposed in MAIL to overcome
the learning challenges brought by the requirements of infras-
tructure management automation. The effectiveness of the MAIL
system has been demonstrated using both synthetic environments
and production environments. It outperforms existing methods
and is able to achieve an 86%-100% success rate for most tasks.

I. INTRODUCTION

With the rapid development of cloud/edge computing, big
data, artificial intelligence, and web-scale applications, today’s
IT infrastructures are becoming ever more complex, which
makes management more challenging and time consuming.
Worst still, these infrastructures are continuously evolving
to meet the fast changing needs of the applications. This
adds more burden to the management team as they need to
constantly adjust their strategies and develop new automation
tools to meet the management requirements.

Infrastructure management teams today use either 1. com-
mand line interface or 2. Graphical User Interface (GUI) to
monitor and manage various IT systems and resources. These
two methods each have their pros and cons. Command line
allows operators to develop customized scripts for automat-
ing some management tasks. However, it often requires the
operator to have programming expertise. Besides, with the
management requirements constantly evolving, it may not be
cost efficient to develop an automation script due to high
development overhead and limited payback. On the other hand,
GUI provides an easy-to-use interface that allows operators
to execute some management tasks without the requirements
of programming skills. However, GUI also comes with its
shortcoming, which is the lack of programmability compared
to command line interface. This makes it challenging to
automate management tasks using the GUI.

Is there a way to get the best of both worlds? In this
work, we look into designing a system that provides intuitive
programmability for web-based GUI by learning from an

* equal contribution

operator’s demonstrations in order to automate infrastructure
management tasks. The goal is to pass on the operator’s
management knowledge to machine learning models through
demonstrations. There are a number of challenges related to
designing such a system, including:

• Limited demonstrations: the system needs to learn from
a small number of demonstrations and be able to automate
the management tasks.

• Long action sequences: some automation tasks involve
taking a long sequence of actions, which is known to be
challenging for current learning algorithms.

• Learning to infer decisions: from the demonstrations,
the system needs to learn and infer the management
decision rules to be able to accurately automate the tasks.

• Handling various data types: the system needs to be
able to handle different types of data including image,
various charts, and text from the web browser in order to
make proper action decisions.

To solve the above challenges, we developed MAIL
(Management Automation through Imitation Learning), a sys-
tem that uses imitation learning to learn from an operator’s
demonstrations to automate web-based management tasks.
Within the MAIL system, a new Contextual Imitation Learning
(CIL) algorithm is proposed to overcome the aforementioned
challenges of traditional learning methods for the setting of
infrastructure management. Unlike other systems, our system
is capable of processing multi-modal data from the browser
(i.e. not only text information, but also images of the web
browser screen). This allows our system to make decisions
based on various visual contents (e.g. line chart, pie chart, and
chart arrangement) during the automation process. To be able
to focus on the right part of the screen, an attention mechanism
is also added to our model. To the best of our knowledge,
this is the first work on automating web-based infrastructure
management tasks using learning methods.

We evaluated our system using 6 automation tasks on
three dashboards: one custom-built dashboard with simulated
data and two open-sourced dashboards running on a large-
scale testbed with production data (OpenStack Dashboard and
Grafana Dashboard). When compared to both existing heuris-
tic methods and learning-based methods, our system is able
to achieve much better performance in terms of successfully
automating the management tasks. Furthermore, we have also

©Copyright IEICE - APNOMS 2021 184

shown the extensibility of our system for continuous improve-
ment and supporting new tasks through an extensibility study.

The main contributions of our work are as follows:
• We design and implement the MAIL system that auto-

mates web-based infrastructure management tasks using
imitation learning techniques.

• We propose a novel Contextual Imitation Learning algo-
rithm that is capable of handling long action sequence
tasks and multi-modal browser inputs.

• We design a set of benchmarks for evaluating web-based
infrastructure automation systems.

• We demonstrate for the first time using our MAIL system
that learning methods can be used in web-based interfaces
for automating infrastructure management. MAIL is able
to achieve over 86% success rate for 5 out of 6 tasks.

II. MOTIVATION EXAMPLE

In this section, we provide a motivating example of the type
of web-based management automation tasks that we consider
in this work. Imagine an infrastructure management operator
responsible for managing a list of Virtual Machines (VMs)
using a web-based dashboard. These VMs are hosting web
servers to serve web requests. The goal of the operator is
to ensure the proper operation of the applications. The usual
routine of the operator is to go through each VM’s individual
page to view its CPU and memory statistics. If the CPU
utilization or memory usage is too high, then the operator will
resize the VM to give it more CPU cores and memory. On the
other hand, if the operator observes an abnormal pattern of the
CPU utilization (e.g. sudden drop), the operator would bring
up more relevant monitoring data charts such as network IO
and disk usage to help zoom in to the problem. He/she then
generates a report of the issue and also tries to take an action
(e.g. reboot) on the VM attempting to fix the issue.

This example demonstrates a number of important in-
frastructure management tasks, such as ad-hoc dashboard
construction, anomaly detection, reporting, and management
action execution. To automate such a management routing,
the automation system first needs to be able to process the
aforementioned various charts (e.g. CPU utilization line chart,
etc), and learns to classify normal and abnormal conditions.
The system also needs to choose the right browser action
at each step of the automation, such as going through each
VM one by one. The number of browser actions increases
linearly with the number of VMs, which makes it a challenging
learning task for traditional learning methods.

III. BACKGROUND AND RELATED WORK

A. Infrastructure Management
There is a large body of work in the area of infrastruc-

ture management. Open-sourced systems such as OpenStack,
OpenNebula, Kubernetes provide capabilities to allow man-
agement of different resources such as VMs, containers, and
networks. Other systems such as Grafana, InfluxDB, and
Prometheus provide monitoring and visualization capabilities
to facilitate infrastructure management. Large testbeds such as
SAVI[1], GENI[2], and CloudLab[3] are developed to support
the management and orchestration of future infrastructures and

applications. Cloud providers such as AWS and Azure offer
software interfaces to help the management of cloud resources.
One commonality shared among these systems is that they all
provide web-based user interfaces for infrastructure manage-
ment purposes. However, none of them provides programma-
bility through their web interface, making it difficult for non-
programmers to automate management tasks.

B. Web Browser Automation

Researchers have been looking into providing solutions to
automate web browser tasks. CoScripter [4] is one of the
earlier works in the area, where web browser automation
processes are manually recorded using a browser plugin and
these ”scripts” are shared among the users. Sikuli [5] uses
screenshots as input and allows the users to program automa-
tion procedures using the screenshots. Although these methods
may work for some simple fixed scenarios, they are not
suitable for infrastructure management tasks as the monitoring
data can be constantly changing. Learning-based methods
have also been proposed to automate web browser tasks.
WGE [6] and DOM-Q-NET [7] propose using Reinforcement
Learning (RL) for automating web browser tasks. WGE uses
expert demonstrations to regularize the exploration of the RL
algorithm. DOM-Q-NET takes natural language instructions
as input and processes the HTML DOM tree using Graph
Neural Network (GNN) to produce browser actions. As these
two methods need to process the whole DOM tree from the
web browser, their performance degrades as the complexity
of the DOM tree increases, which limits their applications
in real-world scenarios. These methods are also unable to
process image and chart inputs as the contents are not visible
in the DOM tree. Furthermore, none of the mentioned previous
work has looked into supporting web browser automation for
infrastructure management tasks.

IV. METHOD

In this section, we focus on discussing the imitation learning
method used in MAIL to support management automation. We
first describe the high-level overview of the method and then
go into the detailed model design.

A. Method Overview

To automate network management tasks using our system,
the operator first interacts with the browser as usual to execute
the management task to record the demonstrations. Then
these demonstrations are used to train a Contextual Imitation
Learning model which learns to take a browser action (e.g.
click, scroll) based on the browser input (i.e. screenshot,
browser text) to accomplish the automation task. Once the
model is trained, it is able to execute the task automatically
without needing help from the operator. During execution time,
at each time step, the model basically takes inputs from the
browser and makes an action decision (e.g. click at a certain
location). Once the action is taken, we wait until the browser
finishes loading/reacting. Then we move to the next time step,
and the model repeats until the task is completed.

To be able to support long action sequences and multi-modal
inputs (screenshot & text) from the browser for infrastructure

©Copyright IEICE - APNOMS 2021 185

Model
Selector

a1

a2 a3

a4

c1, a1

a5

c2, a2

Model 1

Model 2

Model 3

co
nt

ex
t i

nf
o

o1

o2 o3

o4

o5

Overview VM1 Detail Create chart Saved chart Overview (pick next VM)

Fig. 1: Contextual Imitation Learning method overview. Nota-
tions are defined as a: action, o: observation (image and text),
c: context. The subscripts represent the time steps.

Images
224X224

resize

Text Info

Previous Action

Position Branch

Action Branch

X coordinate

Y coordinate

Action Type

Images
Screen
Size

Fig. 2: Model Overview

management tasks, we designed a new learning method called
Contextual Imitation Learning (CIL), which breaks down
the management tasks into multiple sub-tasks and selects an
appropriate model based on the context (e.g. browser URL).
Figure 1 illustrates the idea of this method. Time steps that
belong to the same task use the same model and each task
maintains and passes along their context variables and past
actions, so they can quickly pick up where they left off. An
analogue of this is Context Switch in Operating Systems where
the state of the process is backed up before context switching
and restored after. Such a design can reduce the length of
actions for each task and make it simpler to handle a long
sequence of actions and hierarchical tasks, such as going into
each VM to conduct some sub-tasks. Currently we use the
URL as the input for the model selector to decide which sub-
task the current time step belongs to. Our method can also
support more advanced model selection methods (e.g. image-
based) for more complex scenarios.

B. Model Overview

Next we describe the design of our learning model with an
overview followed by detailed descriptions. Figure 2 provides
an overview of the model. The inputs of the model consist of
browser screenshot image, text information from the browser,
and previous action (e.g. cursor position). These inputs are fed
into both a Position branch and an Action branch to generate
the required output for action execution. The Action branch
is responsible for making the decision regarding the type of
action to take. Currently it supports Left/Right Click, Wait,
Drag, and Scroll actions. The Position branch is responsible
for outputting the additional position information required to
support the action, such as x,y coordinates for click position
and y coordinate for the length of the scroll action.

MLP
(4,3 layers)

Images
224X224

Text Info

Prev Action

Resnet50
& Residual

Attention Network

X coordinateCharacter
Embedding &

LSTM

Position Encoding
(MLP)

(1,2 layers)(2)

(100, N)

(3, 224, 224) (2048, 1, 1)
(2048)

(100, 36)
(3600)

(128)

MLP
(4,3 layers)

MLP
(3 layers)

(128)

(128) (384) (7)
Y coordinate

Flatten

Flatten

Concat

Position branch output

Action TypeMLP
(2 layers)

(7)

Action branch output

Fig. 3: Detailed Model Design.

C. Detailed Description of Action and Position Branch

We use a similar architecture for the Action branch and the
Position branch. The detailed model is shown in Figure 3.
We use three different types of sub-networks to processing
the multi-modal inputs (image, text, actions). Then we com-
bine their output features through concatenation followed by
a Multi-Layer Perceptron (MLP). The details of the sub-
networks are described below:

• Image sub-network: To process screenshot images from
the browser, we use the Resnet50 Convolutional Neural
Network (CNN) architecture due to its good performance
in image processing. However, in our setting, instead of
just looking at the whole screen, we want the model to
also be able to give attention to important areas or charts
on the screen. Thus we added a residual attention mecha-
nism inspired by [8] to our network, which improves the
overall performance.

• Text sub-network: To process the text presented on
the screen of the web browser, we perform a character-
level embedding for the texts and pass them to a Long
Short-Term Memory (LSTM) unit for aggregation. We
specifically chose character-level embedding instead of
word-level embedding because of the characteristics of
the infrastructure management dashboards. Many dash-
boards contain non-regular words such as IP addresses,
VM names, etc. Given their large variety, it is non-trivial
to learn the embedding of all these words. Thus character-
level embedding is more suitable in our scenario.

• Previous action sub network: This network is respon-
sible for processing the previous action to give more
context to the model.

V. IMPLEMENTATION

In this section, we describe the detailed implementation of
our MAIL system. Figure 4 shows the implementation diagram
of the MAIL system. At a high level, the system consists
of a web browser module and a cloud module. The web
browser module runs locally in the operator’s computer and is
responsible for supporting demo recording, and executing the
automated management tasks launched by the operator. The
cloud module is responsible for storing demo data, training,
and storing imitation learning models.

To use this system for automating a management task, the
operator first goes through the training phase. He/she uses
the Demo Recorder component to record several episodes

©Copyright IEICE - APNOMS 2021 186

 Web Browser Module

Demo Database

Training System

Model Database

 Cloud

Model

screenshot, te
xt

Record Demo

Web Browser U
R

L

Input Extractor

Model SelectorExecutor

Operator

Demo Recorder

Fig. 4: Implementation Diagram of our CIL system. Dash line:
training pipeline; solid line: execution pipeline

of executing the task (Recorded episodes from past working
experience can also be used). These episodes are sent to
the cloud and stored in the Demo Database. The Training
system then trains Contextual Imitation Learning models and
stores them in the model database. This completes the training
phase. When the automated task is launched, the input data
is obtained by the Input Extractor from the web browser
and a model is chosen by the Model Selector based on the
URL. These together are used by the executor to pick a
management action for the web page. If the automation task is
not completed, these modules repeat with the new input data
from the web browser, until the task is completed.

Next, we describe the details of each component:
Training System: We used the Pytorch library to build our

Training System. For each training step, we pick a batch of
random image and text pairs from the demo database. We pre-
process the screenshot image inputs by resizing it to (3, 224,
224). Different loss functions are used for the two branches of
the model. The Action branch uses Cross Entropy Loss while
the Position branch uses MSE Loss function.

Model Selector: This component maintains a key-value
table with URL regex and model name. During execution,
it matches the browser URL to the table to obtain the model
name. The corresponding model is then retrieved from the
Model Database (or local model cache) and returned to the
Executor. To avoid excessive remote requests to the Model
Database, the Model Selector maintains a local model cache
of the models used so most requests can be fulfilled locally.

Executor: The Executor uses the model supplied by the
Model Selector and the information extracted by the Input
Extractor to get the encoded action. Post-processing is per-
formed on the encoded action to look up the action type and
to recover the actual pixel location. The Executor then uses
Selenium to send the action to the browser.

Input Extractor: At each timestamp, the Input Extractor
obtains 4 types of data: URL, screenshot image, presented
text and cursor position. We use Selenium to obtain the first
three types of data and PyAutoGUI for the cursor position.

Demo Recorder: The Demo Recorder is used for recording
demos, and can be started and stopped by the operator. Once
started, it automatically records the actions that the user takes

in the browser such as Click, Drag, Scroll, etc. The recorder
stores the actions along with the corresponding data from the
Input Extractor to the Demo Database for training purposes.

VI. EVALUATION

A. Experiment Description
To evaluate our system’s performance, we design bench-

marks using three network management dashboards: 1. Cus-
tom Cloud Management Dashboard; 2. Openstack Dash-
board; 3. Grafana Dashboard. In each environment, we
design two automation tasks.

1) Custom Cloud Management Dashboard: The Custom
Cloud Management Dashboard is a network monitoring and
management dashboard we built for VM management. The
dashboard displays an overview of the VMs and enables the
administrator to easily control the machine based on monitor-
ing data. Some functionalities it provides include monitoring
CPU and memory utilization, starting, stopping, and resizing
the machines. Refer to Figure 5a for a screenshot of the dash-
board. A detailed page of each VM is accessible by clicking
the name of the VM. This dashboard is built using Python
with the Django library. It is built based on the requirements of
cloud network management, and it enables easy customization
to better evaluate our system under different scenarios. We
designed 2 tasks for this environment:
1. Failure Detection & Restart (FDR): For each machine that
shows an inactive status in the overview panel, the operator
needs to start the machine by opening the dropdown menu in
the ACTIONS column and selecting the start instance option.
2. Memory Overload Detection & Resize (MODR): This
task involves going into the detailed view of each VM from
the overview page. Then based on a memory usage pie chart,
the operator needs to resize the VM (i.e. adding more memory)
if the memory usage is above 75%.

2) Openstack Dashboard: Figure 5b shows the Open-
stack’s Horizon dashboard we used to evaluate our method.
OpenStack is widely used in many production environments.
In our case, we use the production Openstack dashboard of
SAVI testbed. The data in this dashboard are all real production
data. The 2 tasks for this environment are:
1. Single-Page Failure Detection & Restart (SFDR): For
each stopped VM, the operator needs to click the correspond-
ing start button in the dropdown menu and wait for it to start.
2. Multi-Page Failure Detection & Restart (MFDR): For
each stopped server, the operator needs to first click the name
of the server to go to the detailed view. Then start the server
by clicking the top-right start button. It also needs to wait for
the server to finish the starting process.

3) Grafana Dashboard: Grafana is another well-known
dashboard for infrastructure monitoring. This dashboard pro-
vides highly customizable features that enable the operator to
easily add information and visualize them in various forms
including charts, numbers, and texts. We use Grafana with
Prometheus database containing production monitoring data
of physical machines from the SAVI testbed. Based on the
features, we designed two automation tasks.
1. Report Generation (RG): Click the physical server names
sequentially and generate each server’s current status report

©Copyright IEICE - APNOMS 2021 187

(a) Custom Cloud Management Dashboard (b) OpenStack Dashboard (c) Grafana Dashboard

Fig. 5: Screenshots of three dashboard environments used for evaluation

by clicking a report generating button.
2. Overload Warning & Investigation (OWI): Go to the
dashboard of each server that has a CPU usage above 100%.
Add a panel using the CPU utilization information for that
machine and save the dashboard.

B. Comparison Methods
For evaluation, we compare our method to both heuristic-

based methods and learning-based methods. For heuristic-
based methods, we compare to an action memorization method
and a demo replay method. These two methods are variants
of the techniques described in the previous work [4]. For
learning-based methods, we use behavioral cloning, which is
a type of imitation learning. The details of the methods are:

• Action memorization (heuristic-based): This method
processes the demonstration data to construct a database
of what next action to take given the previous action and
cursor location. During execution, it looks up the database
based on the current cursor position and previous action
and picks the next action.

• Demo Replay (heuristic-based): This method randomly
samples a demo from the demonstration database and
replays the actions recorded in the demo.

• Behavioral Cloning (learning-based): This method uses
the behavioral cloning learning method [9] to make action
decisions. A Resnet50 network is used with inputs of
image and previous action. A single model is trained to
make decisions for all time steps of one task.

C. Overall Performance
We evaluate our system using the 6 tasks described above

in Section VI-A. We measure the success rate of our system
on each of these tasks. The success rate is defined as the
ratio of successfully completed test runs versus the total
number of test runs. A test run is considered as successfully
completed if the model is able to accomplish the goal of
the automation task. For evaluation, the operator collects 10
demos for each task. Then each method executes 100 runs on
the same test dataset we collected for evaluating their success
rate. Table I shows the evaluation success rate of our method
and the compared methods. We can see that our method
is able to achieve a high success rate for most tasks. The
heuristic-based methods (i.e. Action Memorization and Demo
Replay) failed in many tasks, especially in the production
Openstack Dashboard. This suggests that manually specifying
action sequences by the operator does not work well for web-
based infrastructure management automation tasks, especially

Fig. 6: Ablation Study

in real-world environments. This is because the monitoring
data and the content on the dashboard during execution time
may not be exactly the same as the demonstration, so learning
becomes crucial in this case to be able to generalize and
make accurate action decisions. The learning-based Behavioral
Cloning method performs better than the heuristics-based
methods. However, it is still unable to achieve a high success
rate for several tasks such as the OpenStack Dashboard tasks.
We believe this is due to the Behavioral Cloning method
being unable to handle the long sequence of actions. Although
the model is trained to select accurate actions (e.g. click
at a location), it may have small errors during each step
of the execution, which adds up quickly as the number of
actions increases. On the other hand, our Contextual Imitation
Learning method breaks down the task automatically into sub-
tasks, so the sequence of actions is not too long for each task.
Also by processing multi-modal input data from the browser,
our method is able to further improve its performance. This is
discussed further in the Subsection VI-D below.

D. Ablation Study

To evaluate how different features of our system contribute
to the overall performance, we conduct an ablation study by
removing some features of the system.

For all 6 automation tasks, we compare the original Contex-
tual Imitation Learning algorithm with: 1. CIL without image
branch (i.e. removing the blue branch in Figure 3); 2. CIL
without attention mechanism in the image branch; 3. CIL
without text input branch (i.e. removing the yellow branch
in Figure 3); and 4. CIL with only past action branch (i.e.
only keeping the bottom green branch in Figure 3). Figure 6
shows the success rate of these methods. From these results,
we can observe that the attention-based image processing of
the browser screenshot has the highest impact on the success
rate of the automation tasks. The screenshot not only provides
visual information for the chart but also the overall structure
of the dashboard. Next, CIL without text branch shows perfor-

©Copyright IEICE - APNOMS 2021 188

TABLE I: Success Rate

Environment Task Name Methods
Action

Memorization
Demo

Replay
Behavioral

Cloning
MAIL

(Our method)
Cloud Management

Dashboard
FDR Failure Detection & Restart 7% 8% 9% 86%

MODR Memory Overload Detection & Resize 0% 2% 100% 100%

Openstack Dashboard SFDR Single-Page Failure Detection & Restart 0% 0% 7% 97%
MFDR Multi-Page Failure Detection & Restart 0% 0% 7% 100%

Grafana Dashboard RG Report Generation 100% 100% 99% 100%
OWI Overload Warning & Investigation 0% 4% 8% 13%

mance degradation compared to the CIL method, which shows
the importance of having text processing capability for these
automation tasks. Although the texts can be seen on the screen
of the browser, it is non-trivial to train the image branch of the
model to extract all the necessary text information accurately
to make proper decisions. Overall, this ablation shows the
importance of having a multi-modal processing pipeline for
the automation of web-based infrastructure management.

E. Extensibility Study
1) Model extension for continuous improvement: One type

of extensibility we aim to provide in our system is the ability to
improve over time as we have more data. An operator should
have the option to provide more demonstrations over time to
update or improve an automation task. This allows the operator
to pass on new knowledge, specify new rules, or improve the
model’s performance for specific scenarios. To evaluate this,
we first train the system for the Failure Detection & Restart
task with a fixed number of VMs. Then we add an additional
VM to serve a new application, and ask the operator to provide
5 more demos. The system’s success rate results are shown in
Table II. We see that CIL performs well before adding the VM,
but its success rate decreases as a new VM is added. After
new demos are provided by the operator, the retrained model
is able to quickly learn the automation task from the operator
and achieve a high success rate. In fact the new demos allow
the model to better infer the operator’s intention, and even
improve the performance of the original task.

TABLE II: Success rate for FDR and extended FDR tasks

Setup CIL retrained CIL
FDR task 86% 91%

Extended FDR task (+1 VM) 10% 87%

2) Extensibility for new automation tasks: Ideally, given the
multi-model design of the MAIL system, the system should be
able to leverage existing learned models in new tasks without
having to train from scratch. To evaluate whether our system
can support such an extension, we evaluate the system on a
new task that is a hybrid of two known tasks by mixing models
trained separately for each of the tasks. Specifically, we try to
automate the task of restarting all the VMs by combining the
first model from Memory Overload Detection & Resize and
the second model from Failure Detection & Restart. We found
that this hybrid model is in fact able to complete the new task
with a high success rate. This shows the system’s ability to
support model mixing extension. One potential future work
and extension is to identify and categorize which of the exist-
ing models can be used to solve part of a new task. With such

extension, one can imagine eventually having a model database
that can enable fast construction of models for automating
required tasks based on the operator’s demonstrations.

VII. CONCLUSION

In this work, we proposed the MAIL system that automates
web-based infrastructure management tasks by learning from
the demonstrations provided by the operators. With a learning
method called Contextual Imitation Learning (CIL), we show
that the system can automate various management tasks by
only learning from a small number of demos. We hope our
work can inspire further work in this area to further improve
automation of web-based infrastructure management.

REFERENCES

[1] J.-M. Kang, T. Lin, H. Bannazadeh, and A. Leon-Garcia,
“Software-defined infrastructure and the savi testbed,”
in International Conference on Testbeds and Research
Infrastructures. Springer, 2014, pp. 3–13.

[2] “Geni.” [Online]. Available: https://www.geni.net/
[3] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,

E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb
et al., “The design and operation of cloudlab,” in 2019
{USENIX} Annual Technical Conference, 2019.

[4] G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “Co-
scripter: automating & sharing how-to knowledge in the
enterprise,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2008.

[5] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using gui
screenshots for search and automation,” in Proceedings
of the 22nd annual ACM symposium on User interface
software and technology, 2009, pp. 183–192.

[6] E. Z. Liu, K. Guu, P. Pasupat, T. Shi, and P. Liang, “Re-
inforcement learning on web interfaces using workflow-
guided exploration,” in International Conference on
Learning Representations, 2018.

[7] S. Jia, J. R. Kiros, and J. Ba, “Dom-q-net: Grounded rl
on structured language,” in International Conference on
Learning Representations, 2018.

[8] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang,
X. Wang, and X. Tang, “Residual attention network for
image classification,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017.

[9] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang et al., “End to end learning for self-driving cars,”
arXiv preprint arXiv:1604.07316, 2016.

©Copyright IEICE - APNOMS 2021 189

