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Abstract—A wavelet based compressive sensing technique for 

head imaging is presented. The non-sparsity of the dielectric 

profile of the human head brings about difficulties when applying 

traditional compressive sensing technique to image the profile of 

the head. In this paper, the wavelet transform is implemented to 

convert the non-sparse profile into a sparse domain then a 

compressive sensing framework named block sparse Bayesian 

learning (BSBL) is applied on the Born iterative method (BIM) 

model to reconstruct the original profile of the non-sparse 

domain. The proposed method is evaluated on a realistic human 

head phantom. The results show that a very low normalized error 

rate at a short computation time using small number of antennas 

can be achieved. The obtained results indicate that the presented 

technique can enable detecting an early stroke in the realistic non-

sparse environment of the human head using only six antennas. 

Keywords—Compressive sensing, wavelet transform, head 

imaging, microwave imaging. 

I. INTRODUCTION  

Microwave imaging system for brain stroke detection is 

being widely researched in recent years because of the portable, 

non-ionizing and low-cost characteristics of microwave 

techniques. To that end, several algorithms for microwave head 

imaging system are proposed [1]-[8]. Two general methods are 

usually applied in microwave head imaging algorithms; 

tomography [1]-[3] and radar-based techniques [4]-[7]. The 

algorithms presented in [1]-[2] and [4]-[7] require numerous 

number of antennas for improving the quality of the obtained 

images. However, this requirement is undesirable under the 

head imaging environment due to the limited available space. 

Moreover, small antennas and thus small data sets are preferred 

as the computational time for analysis and imaging is critical 

for head injury patients. Therefore, it is necessary to develop 

new algorithms which use small number of antennas and retain 

the quality of the obtained image. A radar-based compressive 

sensing algorithm is proposed in [8] to reduce the number of 

stepped frequencies required in the head imaging task. 

Nevertheless, the proposed algorithm cannot reduce the number 

of utilized antennas.  

In this paper, a wavelet-based compressive sensing method 

is proposed to largely reduce the number of antennas used in  

 

Fig. 1. Configuration of the imaging domain. 

the head imaging system. Due to the “smooth” representation 

of the contrast-field profile (CFP) of the head, the non-sparse 

CFP can be transformed into a sparse domain using wavelet 

transform. The block sparse Bayesian learning (BSBL) method 

[9]-[10] is then used to solve the inverse problem in the sparse 

domain after implementing  the  wavelet  transform  and  the  

Born  iterative method (BIM) [11] to guarantee the convergence 

of the entire imaging process. The proposed method is assessed 

using a realistic MRI-derived head phantom. The results 

indicate that the method can detect an early stroke inside the 

head accurately using only six antennas with a short 

computation time.  

II. THE PROPOSED TECHNIQUE 

The imaging configuration is shown in Fig. 1. There are Q 

uniformly spaced antennas positioned at the measurement 

contour S. The scattering domain V is illuminated at a certain 

frequency by a TM wave. The domain V is discretised into N 

square cells with certain dielectric properties. The normalized 

dielectric profile (NDP) of the imaging problem is defined as 

           𝒳(𝑥, 𝑦) = [𝜀𝑟(𝑥, 𝑦) +
𝜎(𝑥,𝑦)

𝑗𝜔
] 𝜀�̃�⁄                   (1) 

where  𝜀�̃� is complex dielectric constant and conductivity of the 

surrounding material which is defined as 𝜀�̃� = 𝜀𝑠 + 𝑗𝜎𝑠 𝜔⁄ . The 

NDP possess non-sparse characteristic in realistic head 

phantom, however, due to the “smooth” feature of the NDP (the  
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Fig. 2. Flowchart of the proposed imaging algorithm. 

variation between two adjacent square cells is small with regard 

to the NDP), the non-sparse 𝒳 can be transferred into a sparse 

domain using Haar wavelet. The flowchart of the proposed 

imaging algorithm is shown in Fig. 2. It can be seen from Fig. 

2 that the unknown NDP of the head 𝒳 is firstly assumed to 

have unit distribution, then the pre-assumed 𝒳  is used to 

construct the BIM model [11]. In the constructed BIM model, 

the Haar wavelet transform is used to transfer the non-sparse 𝒳 

into a sparse domain𝒳𝑠. After the wavelet transformation, 𝒳𝑠 

is used in a compressive sensing framework named BSBL [9]-

[10] to solve the inverse problem constructed by using the BIM 

model. After a convergent solution of 𝒳𝑠  is achieved from 

BSBL method, the inverse wavelet transform is applied to 

transfer the sparse 𝒳𝑠 back to the original non-sparse domain 

𝒳  and 𝒳  is used as the new estimate NDP of the head to 

construct a new BIM model. This process is repeated until a 

convergent criterion is satisfied.  

III. SIMULATION RESULTS 

To assess the proposed method, a realistic head model 

acquired from MRI scans [12] and consists of 256 × 256 ×
128 cubical elements is used in the performance assessment. 

Each of the elements has the dimensions (mm) of 1.1 × 1.1 ×
1.4. Seven head tissues are contained in the model which are 

flat,  blood, skeletal muscle, skin, skull, dura, cerebral spinal 

fluid, white and gray matter. A transverse slice of the model at 

around 30 mm from the top of the head is taken as the imaging 

domain. These tissues were assumed to have the realistic 

dielectric properties as a function of frequency. Fig. 3 shows the 

normalized dielectric profile (NDP) of the used head model  

 

Fig. 3. Real part and imaginary part of the realistic head NDP with a 

hemorrhagic stroke placed inside the head. 

 

Fig. 4. The reconstructed dielectric profiles of a realistic head phantom with a 

hemorrhagic stroke. The performance is evaluated under different SNR levels 

at the incident frequency 0.85 GHz. 

 

Fig. 5. NER as the function of iteration time under different noise levels. 

with an elliptical hemorrhagic stroke was placed inside the head 

(x=2cm, y=1.5cm) with a major axis of 5.5 cm and minor axis 

of 1.6cm. The selected size of the stroke is chosen based on the 

available data from MRI and CT scan.  

Six uniformly distributed antennas were used to illuminate 

the head model at a suitable frequency and capture the scattered 

signals. Based on the results concluded in [2], the most suitable 

frequency for microwave tomography imaging is 0.85 GHz. 

The proposed imaging technique was then used to detect the 

position of the hemorrhagic stroke in the head model under 

different signal to noise ratio (SNR). Fig. 4 shows the 

reconstructed dielectric profiles using the proposed imaging  
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Fig. 6. NER of the proposed algorithm when used in head imaging with different 

SNR level and incident frequency is 0.85 GHz. 

algorithm. The obtained results indicate that the technique can 

successfully detect the position of the assumed stroke when the 

SNR is around 25 dB, which is a realistic value for the imaging 

environment.  

The convergent rate is another vital issue in microwave 

head imaging algorithm since it influences the computation 

time, which is a critical factor in head imaging due to the need 

for a fast detection and medication of any brain injury. To 

evaluate the convergence rate and the performance of the 

imaging algorithm, the reconstruction normalized error rate 

(NER) is used as: 

                𝑁𝐸𝑅 = √
1

𝑁
∑ |

𝒳𝐺(𝑥𝑛 , 𝑦𝑛) − �⃗⃗� (𝑥𝑛 , 𝑦𝑛)

𝒳𝐺(𝑥𝑛 , 𝑦𝑛)
|

2𝑁

𝑛=1

         (2) 

where 𝒳𝐺(𝑥𝑛 , 𝑦𝑛) is the NDP of the ground truth, i.e. the real 

profile, and N is the number of discrete squall cells. Fig. 5 

shows NER as a function of the iteration time under different 

noise levels.   It can be seen that the proposed algorithm 

quickly converges after 40 iterations with a total time of around 

400s.  

The performance of the proposed method is also 

numerically assessed with regard to NER and the result is 

shown in Fig. 6 for different SNRs. It can be seen that the 

presented method can achieve NER values when the SNR level 

is greater than 25 dB. This value is sufficient to detect the 

hemorrhagic stroke inside the head.  

IV. CONCLUSION 

An innovative imaging method based on wavelet transform 

and a compressive sensing framework has been proposed. Since 

the contrast-field profile of the realistic head is not sparse, the 

wavelet transform was applied to convert the non-sparse profile 

into a sparse domain, then block sparse Bayesian learning 

method along with the Born iterative method are used to 

recover the contrast-field profile of the head. The proposed 

method was able to reconstruct the non-sparse head normalized 

dielectric profile using small number of antennas within a fast 

convergent time. To assess the proposed method, it was used to 

reconstruct the dielectric profile of a realistic head model. The 

results indicate that the proposed method has the capability to 

reconstruct the dielectric profile of the head successfully and 

accurately detect a hemorrhagic stroke placed inside the head.   
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