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Abstract—With the spread of cloud services over the past 

two decades, the number of content holders (CHs) on the Inter-

net has grown. Some of them are huge multinational companies 

such as GAFAM (Google, Apple, Facebook, Amazon, and Mi-

crosoft). In addition, content delivery networks (CDNs) have 

grown significantly with the increase in traffic from CHs to us-

ers. Some of these CHs and CDNs generate traffic levels compa-

rable to those of major internet service providers (ISPs) and are 

called hypergiants (HGs). The impact of HGs is as large as that 

of major ISPs, and they need to be watched closely because the 

failure of any one of them may affect the entire Internet. Alt-

hough it is not easy to capture the growth of individual autono-

mous systems (ASes), the detection of unknown growing HGs 

will be useful for preventing communication failures and under-

standing the impact status of ASes on the Internet.  

Therefore, in this study we attempted to detect unknown 

HGs by using publicly available data and machine learning 

methods. First, we extracted ASes from Tier 1 to Tier 3 from the 

AS relationship data published by the Center for Applied Inter-

net Data Analysis (CAIDA) and analyzed the features of the 

ASes and the AS-level topology as a complex network. Next, we 

found that the random forest machine learning method was suit-

able for classifying ASes by their features, so we trained the fea-

tures of famous HGs and detected HGs by using random forest. 

As a result, currently growing CDs and CHs were detected as 

HGs. 

Keywords—AS-level topology, Hypergiants, Machine learning, 

Random forest, Detection 

I. INTRODUCTION  

With the spread of COVID-19, the use of the Internet as an 

established information infrastructure is accelerating. Tele-

commuting and online meetings and events are being encour-

aged, and more and more people are engaging in social activ-

ities via the Internet. The Internet is made up of intercon-

nected networks called autonomous systems (ASes) [1], 

which are networks owned by organizations and operated un-

der a single policy. Growth in the number of ASes has been 

accelerating. The Internet Assigned Numbers Authority 

(IANA) assigns an AS number (ASN) to each AS to identify 

it. According to the ASN assignment status by IANA [2], the 

number of ASes may exceed 100,000 by the end of 2021. Of 

these ASes, the number of net-connected devices is expected 

grow from 18.4 billion in 2018 to 29.3 billion in 2023 [3]. 

The bloated autonomous Internet, though artificial, is grow-

ing like an autonomous organism. 

However, large-scale AS failures can significantly affect 

social activities: on November 6, 2017, a routing leak at 

Level3 (now CenturyLink [4]), a major US internet service 

provider (ISP), resulted in the worldwide advertisement of 

border gateway protocol (BGP) routing information for cus-

tomers and connections that should have been internal. As a 

result, a large amount of traffic flowed across the Internet, 

and many users were unable to communicate due to the re-

sulting congestion [5]. In such cases, each AS is required to 

respond to the connection structure and traffic situation of the 

entire Internet. However, each AS can understand only its 

own situation and surroundings, such as BGP routing infor-

mation advertised by neighboring ASes. Therefore, the Cen-

ter for Applied Internet Data Analysis (CAIDA) [6] regularly 

collects, analyzes, and publishes data at multiple points on the 

Internet in order to study the structure of the Internet and trou-

bleshoot the network. CAIDA's scamper, Looking Glass [7] 

servers, and RIPE Atlas [8] measure and publish transmission 

of information about paths on the Internet. 

ISPs have played a major role in the Internet. With the pro-

liferation of cloud services, the number of content holders 

(CHs) who provide and sell content has increased, and their 

services have expanded. With the increase in traffic from CHs 

to users, content delivery networks (CDNs) have also in-

creased in number and scale. CDN companies provide com-

munication services that reduce the load on the network and 

enable faster delivery of content by CHs. Some CHs and 

CDNs, called hypergiants1 (HGs), generate traffic levels 

comparable to those of major ISPs. Most Internet users use 

Google (Alphabet), Apple, Facebook, Amazon, and Mi-

crosoft (GAFAM), and thus these companies significantly af-

fect the global economy. These HGs also affect Internet com-

munication; for example, on August 25, 2017, Google sent 

incorrect routing information, resulting in a massive commu-

nication failure [5]. It is also known that P2P link overflows 

associated with HGs can influence Internet communication 

[9]. In addition, it is known that AS-level topology is chang-

ing and flattening due to the emergence of large-scale CH and 

CDH [10,11,12]. In addition, there is a report that Internet 

traffic is changing due to the lockdowns caused by the 

COVID-19 pandemic [13], and consequently ASes will 

change routing policies and cause AS-level topology to 

change. 

To improve user services by avoiding failures and optimiz-

ing routing paths, each ISP needs to keep a close eye on the 

HGs that affect the entire Internet. One clue about which HGs 

can do that is the AS ranking based on customer cone size 

(CCS) published by CAIDA, but CCS indicates the influence 

as an ISP and does not that as CHs or CDNs. Therefore, we 

1 Major ISPs are also sometimes considered HGs, but ISPs are ex-
cluded from HGs in this study. 
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have conducted research to understand the structure of the In-

ternet by analyzing CAIDA's public information on AS rela-

tionship data and BGP path lists of a stab AS [14-16]. By an-   

alyzing  the AS-level topology and devising an index that re-

veals the influence of HGs, we tried to discover new emerg-   

ing HGs. However, due to the complexity of factors influenc-

ing the structure of the Internet, it may be better to consider 

many features comprehensively than to identify HGs by a sin-

gle index.  

Recently, much attention has been paid to the use of ma-

chine learning to analyze big data. Due to the success of im-

age recognition using deep learning such as deep neural net-

works (NN), recurrent NN, convolutional NN, and so forth, 

the application of deep learning to tasks other than image 

recognition has been widely explored. Since internet ex-

change providers (IXPs) give the communication infrastruc-

ture to CDNs [17], another study [18] focuses on the traffic 

information of IXPs and applies machine learning by com-

bining PeeringDB and RouteViews BGP data to detect 15 

HGs. In the present study, we attempt to detect unknown HGs 

from AS-level topology data. First, we extract ASes from 

Tier 1 to Tier 3 from the AS relationship data published by 

CAIDA [19] and analyze them, including the features of com-

plex networks. Next, we select a suitable machine learning 

method to classify the ASes. Using this method, we trained 

known CHs and detected unknown HGs. In this paper, Sec-

tion II shows the AS features used in our study and III shows 

the method we used to analyze AS features as well as our 

method to detect HGs. The results of the analysis and detec-

tion are discussed in IV, and the features of the AS-level to-

pology and the effectiveness of the HG detection are dis-

cussed in V. 

II. AS FEATURES 

A. AS Relationship Features 

CAIDA defines two main types of relationships between 

ASes: provider to customer (P2C) and peer to peer (P2P). In 

P2P links, ASes provide routing information and traffic to 

each other through nonmonetary contracts. This is called in-

terconnection. In other cases, different ASes are merged into 

the same company's network, but the ASNs are retained. This 

is considered a sibling relationship. In this study, siblings are 

regarded as the same AS and are represented by the main AS, 

and P2C and P2P are the undirected relationships between 

two ASes constructing an AS-level topology, as shown in 

Fig. 1.  

The traditional rendering of an AS topology model [20] is 

represented by a P2C hierarchical model with major ISPs at 

the top. These ASes that do not have any provider are called 

Tier 1. They are completely connected to each other by P2P 

links to form a creek. The CCS is a measure used to rank 

ASes defined by CAIDA, as mentioned above. The CCS of 

an AS is the total number of customer ASes that can be 

reached by P2C links plus one (for its own AS). Major ISPs, 

which are responsible for Internet connectivity, have large 

CCSes. In this study, the numbers of providers, customers, 

and peers, as well as their CCSes, are taken as the feature val-

ues of an AS relationship. 

B. Network Topological Features 

In complex network theory [21], various feature values are 

defined. In this study, we consider AS-level topology as a 

complex network and extract feature values. The four types 

of centrality and cluster coefficients defined in the theory of 

complex networks are defined in the AS-level topology as 

follows. 

 Degree centrality ��
� is a feature that evaluates the 

number of links between ��� and its neighbor ASes, defined 

in (1): 

 ��
� =

��

	
�
 (1) 

where, N is the total number of ASes, the denominator is 

the number of possible links, and ��  is the degree of ��� , 

which is the number of links coming out of each AS. The 

larger ��
� is, the more adjacent ASes ���  has. The range is 

0 ≤ ��
� ≤ 1. 

Closeness centrality ��
�  is a feature that evaluates the 

closeness of ��� to other ASes, defined in (2); 

 ��
� =

	
�

∑ ����,�∈�
 (2) 

where, G is the set of ASes and ���  is the internode distance 

between ���  and ��� . The communication path between 

ASes is determined by AS path lists exchanged by ASes [22]. 

The AS path with the fewest ASes is selected from the AS 

path list in the BGP routing information. ���  is the number of 

links in the path between ��� and ���. The internode distance 

is obtained by analyzing the AS relationship data in this 

study. ��
� is the inverse of the average internode distance be-

tween ���  and all the other ASes. The larger ��
�  is, the 

smaller the average delay to the other ASes, although this re-

lation is not strict because the topology is not router-level. 

The range is 0 ≤ ��
� ≤ 1. 

Betweenness centrality ��
� is a feature that represents the 

amount of involvement of ���  in the path connecting two 

other nodes, defined in (3): 

 ��
� =

��

����
 

�
 (3) 

Tier1

Tier2

Tier3

AS

Peer to Peer (P2P)

Provider to Customer 

(P2C)

Fig. 1. AS-level topology

AS

ASAS

AS relationship Complex network

Provider counts Degree centrality

Customer counts Closeness centrality

Peer counts Between centrality

Customer cone size Eigenvector centrality

Cluster coefficient

TABLE I. AS FEATURES
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where,  � is the number of routes that include ��� in the 

shortest path between both ASes except ���, and the denom-

inator is the total number of combinations of two ASes except 

���. The larger ��
� is, the more important is its role in ensur-

ing the connectivity of the communication channel. The 

range is 0 ≤ ��
� ≤ 1. 

 Eigenvector centrality ��
!"  is the first eigenvector 

corresponding to the eigenvalue with the largest absolute 

value, especially among the centralities reflecting those of 

neighboring ASes, using the eigenvectors of the adjacency 

matrix of the undirected graph, defined by (4); 

 ��
!" =

�

#
∑ $����

!"	
�%�

�&�

 (4) 

 where, $��  is the (i, j)-component of the adjacency matrix of 

AS-level topology and λ is the largest eigenvalue of the ma-

trix. The larger ��
!" is, the more important are the ASes that 

��� links. The range is 0 ≤ ��
!" ≤ 1. 

 A cluster is an agglomeration of nodes, and the 

smallest cluster is a triangle consisting of three nodes with 

three links. The cluster coefficient �� is a measure of the de-

gree of cluster formation involving ���, defined in (5); 

 �� =
'�

�(�

 
�
 (5) 

where, the denominator is the number of AS pairs adjacent 

to ���  and )�  is the number of linked ones among the AS 

pairs. The larger �� is, the more advanced is the cluster for-

mation around ���. The AS relationship features and network 

topology features used in this study are listed in Table I. 

III. DATA AND METHODS 

A. Analysis of AS Features 

In this study, we used the AS relationship data files pub-

lished by CAIDA.  Figure 2 shows the analysis flow of the 

AS relationship data. First, ASNs of the Tier 1 class were de-

scribed in the first line of each AS relationship data file. Next, 

ASes that were not Tier 1 and appeared in P2C records con-

taining a Tier 1 AS were classified as Tier 2. Then, ASes that 

were not yet classified and appeared in P2C records contain-

ing a Tier 2 AS were classified as Tier 3.  When all ASes 

were classified in this way, the highest Tier class was Tier 

7. However, the number of ASes in Tier 4 was much smaller 

than that in Tier 2 or Tier 3, and the number of links was also 

smaller. Meanwhile, when we analyzed the BGP path lists 

collected by the routers of stub ASes, we found that the actual 

number of ASes was larger than the number listed in the AS 

relationship data, and the links between subordinate ASes 

were dense [14]. Therefore, in this study we extracted and an-

alyzed only Tier 3 or higher ASes and the links between them. 

Finally, 10 ASes were selected as known HGs, which were 

GAFAM and the major commonly known CHs and CDNs. 

Since all of them belonged to Tier 2 in the above classifica-

tion, they were removed from the Tier 2 class. The details of 

the selected HGs are described in IV. 

Next we calculated the AS degree and CCS for each AS of 

Tier 1 to Tier 3 and for the known HGs. The AS degree was 

the sum of the number of provider, customer, and peer ASes. 

The CCS was obtained by tracing the P2C links among 

the ASes up to Tier 3. Most Tier 3 ASes had a CCS 1, but 

some had more because they had P2C links to Tier 2 ASes as 

providers. In other words, the P2C links of ASes did not nec-

essarily result in a hierarchical structure with Tier 1 at the top. 

Therefore, in this study we defined CCS to be the value 

counted by limiting the P2C links from the AS to Tier 2. 

These features were calculated from the AS relationship data 

file using Python ver.3.6.12 [23]. 

The degree centrality, closeness centrality, betweenness 

centrality, eigenvector centrality, and cluster coefficients of 

the Tier 1 to Tier 3 ASes were calculated using Net-

workX ver. 2.4 [24].  

B. Detection of Unknown HGs 

In this study, we propose a classifier of ASes and an HG 

detector from AS features by machine learning, as shown 

in Fig. 3. We examined the optimal machine learning algo-

rithms for our purpose among the following machine learning 

algorithms. Random forest (RF) [25] collects several weak 

classifiers of   decision trees and classifies something by en-

semble learning. Support vector machines (SVM) [26] com-

bined with linear SVM (SVM linear) and nonlinear 

SVM (SVM rbf) classify the nodes in the feature space by de-

fining the boundary plane so that the distance between the 

node closest to the boundary plane and the boundary plane is 

maximized. The k-nearest neighbor method (k-KNN) [27] 

measures the Euclidean distance between pre-classified 

teacher nodes and unknown nodes in the feature space, takes 

k teacher nodes in order of proximity to the unknown nodes, 

and determines the classification of the unknown nodes by 

majority vote. Multilayer perceptron (MLP) [28] is a neural 

Tier1

Tier2

Tier3

Clique in AS relationship data(ASRD)

Extract customers of Tier1 from ASRD

Extract customers of Tier2 from ASRD

Fig. 2. Classification flow of ASes

Accuracy Test Discovery (RF)

Train data

Tier 2 80%

Tier 3 80%

Tier 1 100% (19 Ases)

Tier 2 50%

Tier 3 50%

Known HG 100% (10 Ases)

Test data
Tier 2 20%

Tier 3 20%

Tier 2 50%

Tier 3 50%

TABLE II. TRAIN AND TEST DATA FOR MACHINE LEARNING
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network with a structure of three or more layers. An MLP  

with four or more hidden layers is called a deep neural net-

work (DNN). It performs supervised learning using the error 

back-propagation method. 

These learning algorithms are known to be unsuitable for 

some adversaries, depending on the task. Therefore, to find 

out which algorithms are suitable as HG detectors, we per-

formed Tier 2 and Tier 3 identification and compared the 

classification accuracies of machine learning algorithms. As 

shown in Table II, 80% of Tier 2 and Tier 3 ASes randomly 

selected and all Tier 1 ASes were training data. The remain-

ing 20% of Tier 2 and Tier 3 ASes were test data. For machine 

learning tools, we used SVM, RF, and k-NN in Scikit-Learn 

ver. 0.23.1 [29]. k-NN was trained and tested with k=1, 3, 10, 

100, and 1000. In addition, MLP (TensorFlow ver. 2.0.0 

/ Keras [30]) was used to train and test for 3, 5, and 7 inter-

mediate layers. The number of nodes in the intermediate lay-

ers are 18/36/18, 18/36/72/36/18, and 18/36/72/144/72/36/18, 

respectively. Since the classification accuracy may vary de-

pending on Tier 2 and Tier 3 ASes chosen for the training 

data, this procedure from data choice to classification was 

performed 10 times to obtain classification accuracy, and the 

average was taken. As a result, RF was used as the HG detec-

tor because RF had the highest accuracy as described in IV.  

When detecting unknown HGs, we randomly divided Tier 

2 and Tier 3 ASes into 50% each and designated them as Tier 

2_A, Tier 3_A, Tier 2_B, and Tier 3_B, as shown in Table II. 

Tier 1, known HGs, Tier 2_A, and Tier 3_A were trained as 

training data, and Tier 2_B and Tier 3_B were used as test 

data to classify them into Tier 1, HG, Tier 2, and Tier 3. We 

also switched Tier 2_A and Tier 3_A with Tier 2_B and Tier 

3_B and classified them again. The procedure from data se-

lection to detection of A and B was performed 1000 times and 

the HGs were collected. 

IV. RESULTS OF AS FEATURE ANALYSIS AND HG DETECTION  

A. Analysis of AS Features 

Classification results of the AS relationship data from 2019 

to 2021 are shown in Table III. Many Tier 2 and Tier 3 ASes 

were connected to 19 Tier 1 ASes. Moreover, the numbers of 

Tier 2 and Tier 3 ASes increased. The correlation between the 

CCS published in CAIDA (CCSo) and that in this study 

(CCSp) was examined. For the data of July 1, 2021, CCSp = 

1.1395 CCSo, and the coefficient of determination R² was 

0.9683 for both Tier 1 and Tier 2. In contrast, CCSp = 0.4532 

CCSo, and R² = 0.3843 for Tier 3. Therefore, the CCS corre-

lation is strong for Tier 1 and Tier 2 but weak for Tier 3. The   

average values of CCSp were 12307.8, 17.2, and 1.82 for Tier 

1, Tier 2, and Tier 3, respectively. Similarly, the average val-

ues of CCSo were 13852.1, 13.2, and 1.85, and the average 

numbers of P2P links that each AS had were 100.3, 18.5, and  

AS class Hypergiants Tier 1 Tier 2 Tier 3 Total

Count 10 19 17436 35913 53368

Apr 1,  2019

TABLE IV. ASES CLASSIFIED BY TIER CLASS

AS class Hypergiants Tier 1 Tier 2 Tier 3 Total

Count 10 19 17956 38304 56289

Apr 1, 2021

AS class Hypergiants Tier 1 Tier 2 Tier 3 Total

Count 10 19 18487 41225 59731

Apr 1, 2020

ASN AS name Counts Type Country

CCS Provider Customer P2P

13335 CLOUDFLARENET 375 125 147 372 CDN USA

20940 AKAMAI-ASN1 12 129 11 379 CDN Netherlands

54113 FASTLY 1 33 0 259 CDN USA

10310 YAHOO-1 38 11 37 182 eCommerce USA

15169 GOOGLE 14 6 12 359 Search Engine USA

8075
MICROSOFT-CORP-

MSN-AS-BLOCK
9 14 7 283 Developer USA

16509 AMAZON-02 5 32 4 312 eCommerce USA

13414 TWITTER 4 9 3 254 SNS USA

32934 FACEBOOK 4 14 3 376 SNS USA

714 APPLE-ENGINEERING 2 23 1 292 Developer USA

TABLE III.  KNOWN HGS

Apr 1, 2021
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Fig. 5. Closeness centrality vs Customer cone size
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1.86 for Tier 1, Tier 2, and Tier 3, respectively. Ten HGs se-

lected as known HGs are shown in Table IV. These HGs were 

classified as Tier 2 by P2C link analysis.  
  The results of the analysis of the complex network fea-

tures are shown in Figs. 4 to 7. The horizontal axis of each 

figure is the logarithm of CCSp. As the figures show, Tier 1 

ASes were distributed in areas with large CCSes, and Tier 2 

ASes were distributed in wide areas. Although Tier 2 ASes 

have relatively larger CCSes than Tier 3 ASes, they appear to 

overlap in these figures. HGs are distributed in the area with 

relatively small CCSes. 

 The degree centrality of each AS against the CCSp is plot-

ted in Fig. 4. Tier 1 and Tier 2 ASes tended to have large 

degree centralities. Especially, Level 3 (Tier 1), Cogent (Tier 

1), and Hurricane (Tier 2) had extremely large degree central-

ities, indicating that the links were concentrated in these ASes. 

In contrast, HGs had small degree centralities. Closeness cen-

tralities were higher in Tier 1 and lower in Tier 3. HGs had 

high closeness centralities, as shown in Fig. 5. Between-

ness centralities were very small for almost all ASes but ex-

tremely large for Level 3, Cogent, and Hurricane, as shown 

in Fig. 6. Almost eigenvector centralities were low, whereas 

some of Tier 2 ASes were distributed in higher areas, as 

shown in Fig. 7. Cluster coefficients of Tier 2 and Tier 3 ASes 

were widely distributed from 0 to 1, whereas those of Tier 1 

ASes and HGs were low, as shown in Fig. 8. Finally, HGs 

had nearly the same values for all these centralities. 

B. Detection of Unknown HGs 

Table V shows the Tier 2 and Tier 3 classification results 

by RF, SVM (linear), SVM (rbf), k -NN, and MLP. The clas-

sification accuracy by RF was high, but the accuracies by 

both linear (linear) and nonlinear (rbf) of SVM were low. The 

accuracy by k-NN was higher than that by SVM but lower 

than that by RF. The accuracy by k-NN tended to decrease as  

the value of k increased. The classification accuracy by MLP  

was lower than that by RF. Furthermore, the greater the num-

ber of intermediate layers of MLP were added, the lower the 

identification accuracy became.  

  HGs in the AS relationship data on Apr 1, 2019, Apr 1, 

2020, and Apr 1, 2021 were detected. As shown in Table VI, 

cloud services, CDNs, and ISPs, but also streaming video dis-

tribution services, game companies, and an investment com-

pany were extracted. These HGs had small CCSes but large 

numbers of peers, and their closeness centralities were high. 

V. DISCUSSION 

One of the features of known HGs is that they were classi-

fied as Tier 2 because they had direct links to Tier 1. On the 

other hand, the CCSes of known HGs were small. These Tier 

2 known HGs also had an average of 1.6 P2C links with Tier 

1 and in some cases had P2P links with Tier 1. In addition, 

there were many P2P links between Tier 2 and Tier 3 

Fig. 7. Eigenvector centrality vs Customer cone size
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RF SVM

0.982
linear rbf

0.810 0.719

KNN

K 1 3 10 100 1000

0.933 0.933 0.922 0.882 0.821

MLP

Layer 9/18/36/18/2 9/18/36/72/36/18/2 9/18/36/72/144/72/36/18/2

0.919 0.904 0.885

TABLE V. AS CLASSIFICATION ACCURACIES OF MACHINE LEARNING METHODS

Apr 1, 2020

ASN AS name Organization Country

42 WOODYNET-1 WoodyNet USA

2906 AS-SSI Netflix Streaming Services Inc. USA

15133 EDGECAST MCI Communications Services, Inc. 

d/b/a Verizon Business

USA

36408 CDNETWORKSUS-02 CDNetworks Inc. USA

44444 Forcepoint-Cloud-AS Forcepoint Cloud Ltd UK

46489 TWITCH Twitch Interactive Inc. USA

57976 BLIZZARD Blizzard Entertainment, Inc USA

199524 GCORE G-Core Labs S.A. Luxembourg

Apr 1, 2019

TABLE VI. DETECTED HGS IN 2019 ~ 2021 AS RELATIONSHIP DATA

ASN AS name Organization Country

14630 INVESCO Invesco Group Services, Inc. USA

14907 WIKIMEDIA Wikimedia Foundation Inc. USA

15133 EDGECAST MCI Communications Services, Inc. 

d/b/a Verizon Business

USA

16276 OVH OVH SAS France

21859 ZNET Zenlayer Inc USA

57976 BLIZZARD Blizzard Entertainment, Inc USA

136907 HWCLOUDS-AS-AP HUAWEI INTERNATIONAL PTE. 

LTD.

Singapore

Apr 1, 2021

ASN AS name Organization Country

2603 NORDUNET NORDUnet Denmark

2906 AS-SSI Netflix Streaming Services Inc. USA

14537 CL-1379-14537 Continent 8 LLC USA

15133 EDGECAST MCI Communications Services, Inc. 

d/b/a Verizon Business

USA

36351 SOFTLAYER SoftLayer Technologies Inc. USA

42473 AS-ANEXIA ANEXIA Internetdienstleistungs GmbH Austria

57976 BLIZZARD Blizzard Entertainment, Inc USA

199524 GCORE G-Core Labs S.A. Luxembourg

Apr 1,  2020
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ASes. In terms of centrality, closeness centrality differed 

greatly by tier, with Tier 1 and HG having particularly high 

closeness centralities. The reason for the high closeness cen-

trality of Tier 1 is that closeness centrality is higher when the 

path lengths from other ASes are smaller, and Tier 1 is lo-

cated at the center of the AS topology. On the other hand, the 

large closeness centralities of HGs may be due to the in-

creased number of links that favor access to HGs.  Between-

ness centralities are high only for two Tier 1 ASes and 

one Tier 2 AS were high, while those for the others are low. 

In the past, Tier 1 played an important role in ensuring con-

nectivity, but as communication paths have been distributed 

due to the increase in links, the role of ensuring connectivity 

may be concentrated in certain ASes.  

In the comparison of machine learning algorithms, neither 

linear SVM nor nonlinear SVM had high classification accu-

racy. Even for k-NN, the accuracy decreased when the value 

of k increased. These results suggest that it is difficult to dis-

criminate between Tier 2 and Tier 3 based on the distance 

between features. However, the accuracy of MLP also de-

creased as the number of intermediate layers increased. On 

the other hand, RF had the highest classification accuracy, 

98%. The HGs detected by the RF algorithm were character-

ized by small CCSes and large numbers of P2Ps, similar to 

the known HGs. The organizations that owned the de-

tected ASes were examined, and fast-growing CH companies, 

such as game companies and content distribution networks, 

were found.  

VI. CONCLUSIONS 

The recent growth in both the size and number of ASes has 

affected the AS-level topology year by year. We have focused 

on its change and the knowledge obtained from AS-level to-

pology. In this study, we analyzed the AS relationship data 

published by CAIDA to obtain the features of both AS rela-

tionships and complex networks. Based on the results, we ap-

plied to detect unknown HGs by machine learning method. 

As a result, currently growing ASes of CDNs, streaming 

video distribution services, and so forth were detected as HGs. 

In other words, we have shown that AS topology analysis and 

machine learning can be used to detect newly growing HGs.  

Information about such influential ASes will be useful for 

many IPSs that are trying to improve their customer service 

by preventing failures and formulating routing policies. 

In the AS relationship data of CAIDA, however, infor-

mation about lower-layer ASes is unreliable. In addition, it is 

difficult at the current situation to obtain information on traf-

fic, which is important in order to understand communication 

networks. If the node and link information of lower-layer 

ASes and the traffic information of the entire Internet can be 

collected, the communication status will be clearer to every 

ISPs and the network operation of each AS will be more re-

silient to failures such as major disasters.  
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