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Measurement-based IoT Server Selection for
Mobile Edge Computing
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Abstract—The exponential growth in a number of the smart
devices connected to the Internet of Things (IoT) in recent
years has resulted in a massive increase in the volume of user
generated content. Edge computing has been proposed to reduce
the communication latency and improve the security of the user
data by moving the computation and storage functions of these
services closer to the users. However, the transmission delay
between the devices and the edge server has a critical effect
on the performance of the data offloading service since most IoT
applications are delay-intolerant. Accordingly, the present study
presents the use of measurement-based selection to determine
the server with the shortest delay. Overall, the results show that
irrespective of the scale of the networks, this kind of method
helps to select the server with a reasonable cost.

Index Terms—IoT, fog-based storage offloading, edge comput-
ing, RTT, delay.

I. INTRODUCTION

The Internet of Things (IoT) has dramatically expanded in
recent years and includes many potential applications such
as smart home security system, remote health care, inventory
tracking, autonomous vehicles, and so on. According to a
recent Cisco report, the number of devices connected to the
IoT is likely to exceed 500 billion by 2025, where these
devices will include not only computers and smartphones, but
potentially any IoT-enabled physical object such as electronic
home appliances and sensors [1].

The rapid increase in the number of devices connected to
the IoT has led to an exponential growth in the volume of
user generated content. This poses a significant data storage
challenge since most IoT devices have only limited storage
resources [2], [3]. To ease this problem, several cloud comput-
ing companies have developed centralized cloud-based storage
services (e.g., Apple iCloud, Dropbox and Google Drive) such
that IoT devices can offload some of their computational tasks
and even storage management to the cloud; thereby resulting
in significant local memory space savings. However, much of
the data sensed by IoT sensors is sensitive. For example, home
security system data is highly attractive to intruders and other
cyber criminals [4], if not properly secured. Hence, the storage
and protection of sensitive data poses a significant challenge
to the future development of the IoT.

Furthermore, storage offloading also raises various
connection-based issues, such as traffic congestion, lengthy
delays, and high energy consumption. Mobile edge computing
(MEC) is an emergent architecture where cloud computing
services are extended to the edge of networks [5], [6]. Fig. 1
presents a schematic illustration of the IoT storage offloading
paradigm with edge server, where the computational and
storage task of the user is distributed to the edge servers
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Fig. 1: A brief concept of storage offloading in IoT
applications.

via an IoT gateway. The connection speed between the IoT
gateway and the edge servers has a critical effect on the
performance of the data offloading service. Accordingly, many
applications provide the method to measure the delay. For
example, in [12], Voice over IP (VoIP) communications were
improved by means of QoS-enabled Access Points (APs) in
which traffic streams with different priorities were identified
based on an inspection of the Round-Trip-Time (RTT) values
determined from the Real-time Transport Control Protocol
(RTCP) packet header information.

Besides of the RTT, many studies use the Received Signal
Strength (RSS) as the selection criterion for investigating the
best WiFi AP. In [8], if mean RSS value and loss rate of
a particular AP fell below pre-defined threshold, that AP
would not be selected for offloading purposes. Shafi et al.
[7] extended the AP selection process to consider not only the
RSS value, but also the WiFi bandwidth availability. Hence,
using the measurement-based selection is much better than the
RSS-based one in case of considering a transmission speed.

In order to understand the performance of the delay
measurement-based selection, for instance, how many times
the delay should be measured in order to claim that it is
the “best” server with the fastest path, we use simulation
to assess the performance in terms of the precise selection
probability and the selection delay. We assume that the storage
server is chosen as the server with the fastest response time
over K measurements; the measurment can be provided by
the Resquest/Response round trip time provided in some
application headers (such as RCTP mentioned before) or
simply using the measurement delay obtained via the Internet
Control Message Protocol (ICMP) ping commands. The delay
measurement is used to explore the total waiting time for the
transmission delay and the processing time in the server.
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Fig. 2: System model for the storage server selection in IoT
offloading.

The remainder of this paper is organized as follows. Sec-
tion II describes previous related work in the field. Section
III presents the simulation model. Section IV describes the
measurement-based server selection. Section V further inves-
tigates the performance of the measurement-based selection
via several numerical examples. Finally, Section VI provides
some brief concluding remarks.

II. BACKGROUND AND RELATED WORK

Recently, numereous studies on storage offloading stated
the problems of reducing delay between an end-user and the
edge server and investigating the edge server with a suitable
network condition. Elgazar et al. [9] presented an intelligent
offloading system designated as EdgeStore to provide the best
edge sever to users in accordance with the place of network
environment namely rural, suburban and metropolitan.

Moreover, Edge computing is also beneficial in improving
the energy consumption. Chang et al. [10] proposed a joint
computation offloading and radio resource allocation algorithm
to minimize the system cost; Xu et al. [11] studied the edge
server placement for social media offloading in Internet of
Vehicles (IoV). Such proposed methods all employed the
concept of resource sharing among servers to minimize the
energy consumption.

In practice, the performance of data offloading is critically
dependent on the network conditions. Accordingly, some stud-
ies tried to select appropriate WiFi APs to establish a seamless
connection in MEC environments. Fakhfakh and Hamouda
[13] developed a distributed Q-learning algorithm to facilitate
the WiFi offloading decision based on a joint consideration
of the AP load, the handover duration, the offered gain, and
the signal-to-interference-plus-noise ratio. Flaithearta et al.
[12] selected the best WiFi AP for a VoIP application by
considering the RTT value between an end-user and each
candidate AP.

III. SYSTEM MODEL

Fig. 2 shows the system model of the storage offloading
scenario, where considering a set of M storage server are de-
ployed in the edge network, denoted by S = {S1, S2, . . . SM}.
Each edge server Si can provide offloading storage for IoT
devices, which is connected via the serving IoT gateway.

An IoT gateway serves a group of nearby IoT devices and
offloads/retrieves the store data to an IoT storage server. To
reduce the data transmission time between the IoT gateway
and edge server, the IoT gateway selects the edge server with
the fastest transmission path, which can be determined by the
delay measurement, for example, obtaining the RTT via the
Ping message defined in the ICMP protocol. However, the
delay is varying by different factors. In measurement-based
selection, the real “fastest” path is measured by the average
value of K measurements for each edge server Si. Based on
the measurement, we choose the edge server with the smallest
average delay in the test as the storage edge server.

IV. MEASUREMENT-BASED SERVER SELECTION

This section studies the performance in the measurement-
based selection for the edge storage by testing the transmission
latency between the IoT gateway and the candidate edge
storage server. In each Si ∈ S, the IoT gateway independently
issues a Measurement Request (e.g., an ICMP Ping
Request message) to measure the delay or the RTT to each
of them. When a Measurement Response (e.g., a Ping
Response) is received, the IoT gateway continuously issues
another Measurement Request to edge server Si until K
measurement values for each server are obtained.

For 1 ≤ k ≤ K, let t(k)i be the delivery delay be-
tween the IoT gateway and Edge server i for the k-th
Request/Response delivery performed by the IoT gate-
way. Let Ti(K) be the elapsed time of the measurement-based
selection corresponding to Server i, which is expressed as

Ti(K) = t
(1)
i + t

(2)
i + · · ·+ t

(k)
i + · · ·+ t

(K)
i (1)

Based on the results, measurement-based selection chooses
the storage server which has the minimum Ti(K) value for
data transmission. Hence, the IoT gateway selects the storage
server ∆1, where i∗ = argi min(Ti(K)),∀Si ∈ S, and

∆1 = Si∗ (2)

To evaluate the method, we assess two output metrics,
including the correct selection probability

α = Pr[∆1 = E[∆1]] (3)

and the selection time

tl = min{T1(K), T2(K), . . . , TM (K)} (4)

For validation purposes, when Ti(K) is exponentially dis-
tributed with respective rates λi. The selection time tl is also
exponentially distributed with rate γ =

∑M
i=1 λi. For K = 1,

i.e., when a single measurement is performed, the real best
server is the one with max{λi}, for 1 ≤ i ≤ M . We have
α = max{λi}/γ.

It is obvious that with a larger parameter K, we have a
higher best selection probability α but a longer selection time
tl. On the other hand, with a large set of servers, i.e., M is
large, we have a smaller tl but also a lower α. In the next
section, we need to consider the trade-off between them.
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V. NUMERICAL EXAMPLES

In this section, the effectiveness of the measurement-based
selection is investigated by means of several numerical ex-
amples conducted in C++. The performance of the proposed
method is evaluated in terms of two metrics, namely the cor-
rect selection probability α, the IoT gateway correctly selects
the best edge server, and E[tl] and the average waiting time
for determining the selected server. The numerical examples
presents the results of the effect of K and the effect of the
number of edge servers, M .

A. Effect of number of measurement rounds, K

In the edge server selection process, the IoT gateway
uses the measurement-based selection to choose the fastest
offloading path among the edge servers. We assume that the
measurement delay between each edge server Si and the IoT
gateway follows an Erlang distribution with mean ni

λi
, which

have the scale parameter 1/λi and the shape parameter ni.
When ni = 1, the measurement delay is exponentially dis-
tributed. The edge server generating the smallest measurement
delay is then regarded as the best server for performing the
storage offloading process. We consider that there are five edge
servers with parameters of ni = 3/K for all five servers, and
λ1 = 15, λ2 = 12, λ3 = 9, λ4 = 6, λ5 = 3, respectively.
Thus, S1 is expected to be the best serving edge server ∆1

since it has an average measurement delay of 0.2 seconds,
whereas the measurement delays of the other four servers are
all greater than 0.25 seconds.

Table I shows the simulation results for the distribution of
the top three edge servers selected from the five edge servers.
It is seen that increasing K can make S1, which is actually the
best server, get chosen more frequently. It is seen that S1 and
S2 are selected as storage server (denoted as ∆1), as the two
highest probability values that the IoT gateway correctly select
a couple of servers to perform storage offloading process,
while the S3 is not selected to join the activity.

For K = 1, a single measurement round is performed
in the server selection process, every edge server has a
amount of probability of producing the smallest measurement
delay between Si and the IoT gateway in some tests. As
a result, even though S1 is selected most frequently among
all the servers, its selection probability does not reach 50%,
while those of servers S2 and S3 are just 29% and 16%,
respectively. For higher values of K, however, the probability
of S1 being selected increases markedly to almost 70% at
K = 5, while those of S2 and S3 reduce to approximately
25% and 5%, respectively. In other words, as the number of
measurement rounds increases, the correct best server S1 is
more frequently selected as the probability of the best edge
server also increases. However, the improved reliability of the
selection process is obtained at the expense of a higher latency
(tl). For example, given the use of a single measurement round,
the IoT gateway requires just 0.1317 seconds to determine the
best edge server for offloading purposes. However, for K = 5,
the processing time increases to 0.9250 seconds. Thus, in
determining the optimal value of K, it is necessary to reach a

TABLE I: The performance against the number K
measurements collected.

K Pr[∆1 = S1] Pr[∆1 = S2] Pr[∆1 = S3] E[tl]
1 45.8% 29.2% 16.5% 0.1317
2 55.8% 30% 11.5% 0.3239
3 61.1% 28.6% 9.1% 0.5254
4 66.2% 26.3% 7% 0.7230
5 69.3% 25.3% 5% 0.9250

Network condition λi (i 6= 1)
Scenario 1 0.1λ1
Scenario 2 0.3λ1
Scenario 3 0.5λ1
Scenario 4 0.7λ1
Scenario 5 0.9λ1

TABLE II: The initial network settings of five storage
servers for each scenario (M = 5, m1−5 = 3, λ1 = 5).

satisfactory tradeoff between the latency of the server selection
process and the reliability of the selection results.

B. Effect of number of edge servers, M
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Fig. 3: Effect of a number of edge servers, M .

Table II shows the initial settings of the five edge servers in
each network configuration scenario. In this table, λ1 is fixed
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and always larger than other λi, for i ≥ 2. Therefore, S1 is
the best server. As discussed above, the probability that the
IoT gateway correctly selects the best edge server (α) and the
latency of the server selection process (E[tl]) both increase
with increasing K. However, in practice, if the same edge
server is always selected as the storage server, its workload
increases dramatically. Therefore, increasing the competition
among the servers by adding more servers to the node is
beneficial in easing the workload of the storage server since the
IoT gateway then has a greater freedom of choice in selecting
the good-quality server. Consequently, the second numerical
example investigated the performance of the measurement-
based selection for various numbers of edge servers in the
node ranging from M = 2 ∼ 12.

In scenario 1, the measurement performance of server S1 is
configured to be higher than that of any of the other servers,
and hence it is always selected as the best server, irrespective
of the number of servers in the scenario (see Fig. 3a). However,
for all of the other scenarios, the probability that S1 is correctly
selected as the storage server reduces with increasing M . For
example, in the second scenario, the other servers, Si, have
a greater likelihood of being selected in place of S1 as the
number of servers increases. In particular, when the scenario
contains just two servers, server S1 is almost always selected
as the storage server ∆1. However, as the number of servers
increases to M = 12, the other servers, Si, are more frequently
selected as the best server and hence α reduces to a final
value of 93%. In the fifth scenario, α reduces rapidly with
increasing M since all of the edge servers have a comparable
RTT performance and thus have an almost equal chance of
being selected as the storage server. As a result, the probability
of S1 being correctly chosen as the best server reduces to just
12% when 12 servers are deployed at the same group.

For the first and second scenarios, server S1 is more
frequently selected as the best server than the other servers
when the number of measurement rounds is set as K = 3.
Thus, the latency prediction in both scenarios is determined
mainly by the delay of S1. Consequently, referring to Fig. 3b,
the latency, E[tl], in scenario 1 maintains a constant value of
approximately 1.8 seconds as the number of servers increases,
while that in scenario 2 has a stable value of approximately
1.78 seconds. For the other three measurement value of S1

since all of the other servers have a relatively higher chance of
generating the lowest delay value. Thus, the latency is lower
than that in scenarios 1 and 2 and reduces with increasing
M . In scenario 5, every server has an approximately equal
chance of being selected as the storage server and hence the
latency value reduces rapidly as a greater number of servers
are deployed in this scenario. For example, given two servers
in the same network group, the latency of the IoT gateway in
searching for the best server is around 1.54 seconds. However,
as the number of servers is increased to M = 12, the latency
reduces to just 1.056 seconds.

VI. CONCLUSION

In IoT storage offloading, the end-users do not need to com-
municate with the cloud server directly, and hence the com-
munication delay is reduced and the data security improved.

However, the quality of the communication channel between
the IoT gateway and the edge server has a critical effect on the
offloading performance; particularly for delay-intolerant IoT
applications sensing real-time data. Accordingly, the present
study demonstrates the performance in measurement-based ap-
proach towards choosing the edge server capable of responding
rapidly to the user offloading requirements. The simulation
results have shown that the proposed method not only provides
an effective means of identifying the most suitable edge server
for offloading purposes, but also incurs only a short latency
in the case where all of the edge servers have a comparable
network environment. Furthermore, since the K-Measurement
method is specifically designed to discover the edge servers
with the fastest offloading path, users can be accordingly
confident to complete their activities.

ACKNOWLEDGMENT

The work of S.-I. Sou was sponsored in part by Ministry of
Science and Technology (MOST), Taiwan, under the contract
number MOST 108-2628-E-006-006-MY3.

REFERENCES

[1] J. Yao and N. Ansari, “QoS-Aware Fog Resource Provisioning and Mobile
Device Power Control in IoT Networks,” IEEE Transactions on Network
and Service Management, vol. 16, no. 1, pp. 167-175, March 2019.

[2] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable
IoT architecture based on transparent computing,” IEEE Netw., vol. 31,
no. 5, pp. 96–105, Aug. 2017.

[3] A. Colakovic and M. Hadzialic, “Internet of Things (IoT): a review of
enabling technologies, challenges, and open research issues,” Computer
Networks, vol. 144, pp. 17-39, Oct. 2018.

[4] Z. Guan et al., “Privacy-preserving and efficient aggregation based on
blockchain for power grid communications in smart communities,” IEEE
Commun. Mag., vol. 56, no. 7, pp. 82–88, 2018.

[5] K.-K. R. Choo, R. Lu, L. Chen, and X. Yi, “A foggy research future:
Advances and future opportunities in fog computing research,” Future
Gener. Comput. Syst., vol. 78, pp. 677–697, Jan. 2018.

[6] Y.-Y. Shih, W.-H. Chung, A.-C. Pang, T.-C. Chiu, and H.-Y. Wei,
“Enabling Low-Latency Applications in Fog-Radio Access Network,”
IEEE Network, vol. 31, no. 1, pp. 52–58, 2017.

[7] U. Shafi, M. Zeeshan, N. Iqbal, N. Kalsoom and R. Mumtaz, “An Optimal
Distributed Algorithm for Best AP Selection and Load Balancing in
WiFi,” International Conference on Smart Cities: Improving Quality of
Life Using ICT IoT (HONET-ICT), Islamabad, 2018, pp. 65-69.

[8] W. Zhang, K. Yu, W. Wang and X. Li, “A Self-Adaptive AP Selection
Algorithm Based on Multiobjective Optimization for Indoor WiFi Posi-
tioning,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1406-1416,
1 Feb.1, 2021.

[9] A. Elgazar, M. Aazam, and K. Harras, “EdgeStore: Leveraging Edge
Devices for Mobile Storage Offloading,” IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), Nicosia, 2018,
pp. 56-61.

[10] Z. Chang, L. Liu, X. Guo and Q. Sheng, “Dynamic Resource Allocation
and Computation Offloading for IoT Fog Computing System,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3348-3357,
May 2021.

[11] X. Xu et al., “Edge Server Quantification and Placement for Offloading
Social Media Services in Industrial Cognitive IoV,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 4, pp. 2910-2918, April 2021.

[12] P. O. Flaithearta, H. Melvin and M. Schukat, “A QoS enabled WiFi
AP,” IEEE Network Operations and Management Symposium (NOMS),
Krakow, 2014, pp. 1-4.

[13] E. Fakhfakh and S. Hamouda, “Incentive reward for efficient WiFi
offloading using Q-learning approach,” International Wireless Commu-
nications and Mobile Computing Conference (IWCMC), Valencia, 2017,
pp. 1114-1119.

©Copyright IEICE - APNOMS 2021 20


