
A Vector Graphic Accelerator for Embedded Systems

Y. Choi1, E.-K. Hong1, G.-H. Lee1, Y.-L. Shen1, T.-K. Kim1, H.-G. Kim2, and H.-C. Oh3

1 Parallel Computation Lab., #231B Bio-Sci Bldg(Green), Korea Univ., Seoul 136-713, Korea
2 R&D center, Advanced Digital Chips, #1009-5 DaeChi-Dong, Seoul 135-280, Korea

3 Dept. of Info. Eng., Korea Univ., Chung-Nam 339-700, Korea
E-mail: 3ohyeong@korea.ac.kr

Abstract: This paper presents a prototype hardware
accelerator for two-dimensional vector graphics
applications based on the OpenVG standard. Since our
design mainly targets embedded applications, we focus on
efficient uses of limited resources, especially the memory
bandwidth. The designed accelerator can process images of
640x240 pixels with moderate complexity at the rate of 30
frames per second. Our current design costs
approximately .40 million equivalent gates when it is
implemented using a 0.18um CMOS standard cell library.

Arbiter / Interface Unit

Gen/Sort

Queue

SRAM
4KB

R_fill

Buffer

SRAM
4KB PixelPipeQueue

CPU local memory (DDR SDRAM)

1. Introduction

Unlike the bitmap (or raster) graphics, the vector graphics
models images using mathematical expressions which
requires relatively small amount of data. Using those
mathematical expressions, an image can be easily converted
to an image of an arbitrary size while not losing its quality
that much. Due to these advantages, the vector graphics is
drawing interests from the industries producing various
systems.

Figure 1. Block diagram of the accelerator

The accelerator is designed to be able to render 30 frames
of 640x480 images per second, while it is able to render
larger images such as 1024x768 images at a lower rate.
Since the local memory often constitute the bottleneck of
the system, we adopt one 4KB SRAM (write) queue and
two 4KB SRAM buffers to reduce the amount of memory
accesses. Using the double buffers, one scan line can be
processed by the Gen/Sort stage, while the previous one is
being rasterized by the R_fill stage.

As vector graphics applications earns growing
popularity in various systems, efficient acceleration
schemes for vector graphics need to be developed at various
perform- ance levels[1-3]. This paper introduces a
prototype hard-ware accelerator for for the vector graphics
applications based on the OpenVG standard[4]. The
standard provides a low-level two-dimensional vector
graphics Application Programming Interface (API) for
hardware acceleration [4]. Even though it is also possible to
accelerate the OpenVG graphics using the resources
prepared in the graphic processors for three-dimensional
graphics, special-purpose hardware for two-dimensional
graphics is still an attractive solution for embedded systems
in which the implementation cost and power consumption
are crucial.

The designed accelerator has been modeled in
VerilogHDL and simulated using Cadence NC-verilog.
Then it has been synthesized on approximately .40 million
equivalent gates using a 0.18um CMOS standard cell
library. Synopsys DesignWare library has also been used in
our simulation and synthesis.

The rest of this paper is organized as follows: Section 2
explains the architecture and basic modules of the proposed
accelerator. Section 3 describes our evaluation of the
accelerator. Finally, in Section 4 we conclude this paper
and discuss directions for future work. The accelerator is designed to be used in an SoC

(System on a Chip) in which ADChips’ AE32KC processor
is the host processor. Since the SoC targets the applications
in resource-limited areas, the main objective of our design
is to utilize the memory bandwidth efficiently.

2. The Accelerator

As shown in Figure 1, the accelerator consists of three
macro stages, denoted as Gen/Sort, R_Fill, and PixelPipe.
The Rasterization and Scissoring stage consists of two
stages: Gen/Sort and R_fill. Each macro stage is also
designed in the pipelined fashion.

Closely following the reference implementation (RI) [5]
of OpenVG, we divide the OpenVG rendering process into
four stages: Application, Tessellation, Rasterization and
Scissoring, and PixelPipe stages. From our analysis using
the RI and a variety of (simple) applications running on the
AE32KC processor, we found that most of the execution
time is spent in executing the stages after the tessellation
stage. Thus, our current design implements in hardware the
stages after the tessellation stage, as shown in Figure 1. Up
to the tessellation stage, we currently rely on the software
implementation modified for the host processor.

The Gen/Sort stage generates the active-edge table and
sorts the active edges which will be used in the R-fill stage.
We have sought a sorting scheme that makes the utilization
of the data accessed from memory efficient, in order to
reduce the execution time in the rasterization stage. It is
also crucial to supply data in time from memory, which is
the main function of the Arb/IF unit.

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

1633

2. 1 The Gen/Sort Module

The Gen/Sort module supplies the active-edge data to the
R_fill module. It generates the data from the edges that are
suppied by the Tessellation stage, a software stage in this
work. Then it sorts the active-edge data by pixels for each
scan line. This sorted active-edge data is used for the edge
fill operation[2] in the R_fill module.
 The edges associated with the same pixel are not sorted.
So, the edges are sorted in a fashion similar to the bucket
sort. Since an acitvie edge data can belong to serveral pixels,
this information is stored in the data of the rightmost pixel.

(a)

(b)

Figure 2. A moving flower. When the image in (a) is
being processed, the black and gray parts in (b) have no
edge to be sorted.

Some frame includes lots of scan lines and/or pixels that
have nothing to do with active edges so that they can be
excluded from the sorting process. When the image in
Figure 2(a) is being processed, for example, the black and
gray parts in Figure 2(b) have no edge to be sorted. The
Gen/Sort module, therefore, uses the maximum and the
minimum of the coordinates over all the edges in the frame
being processed to sort out those scan lines and pixels
which do not have any active edges involved. In order to
reduce the memory bus traffic, as shown in Figure 1, two
SRAM buffers are used during this process and for
transfering the sorted results to the next stage, the R_Fill
module.

In order to reduce the memory bandwidth, the edge data
generated by the Tessellation stage is represented in a 16-

bit fixed-point format. Some of the active-edge data
provided to the R_fill module are represented in the same
16-bit fixed-point formant. Throughout our design,
however, we use 24-bit precision arithmetic units for most
floating point operations. Figure 3 summarizes the
operation of the Gen/Sort module. The performance of the
R_fill module depend on the number of edges created by
the Tesselation stage.

Find
Min & Max

Sort
Active edges

Send RDY
 to R_Fill

Store
active-edge data
to local memory

Wait for ACK
 from R_Fill

Figure 3. Operation of Gen/Sort

2. 2 The R_fill Module

The R_fill module decides whether to paint each pixel or
not and sends the coverage values to the PixelPipe module.
The active-edge data from the Gen/Sort module are
analyzed for making the decision.
 From the active-edge data, the R_fill module obtains the
winding value which is used to generate coverage value.
We use the 8-queens algorithm for better image qulity and
generate eight sample points. After judging whether the
active edges are located to the left of the sample point, the
winding value is calculated from the direction values of the
active edges. Then, the coverage value is determined from
the calculated winding value and the fill rule set by the user.
 When the winding value is calculated, not all the active
edges existing to the left of the current pixel should be
considered. Only those which are across the current pixel
are considered. In order to implement this scheme, the
R_fill module use the falg information set by the Gen/Sort
module, which indicates the last pixel of the active edge.
The module also keeps the winding value of the previous
pixel.
 All the results generated by the R_fill module, the
position (x and y) and the coverage values, are pushed into
the queue between the R_fill and PixelPipe modules. The
performance of the R_fill module also depend on the
number of edges created in the Tesselation stage.

2. 3 The PixelPipe Module

The PixelPipe module determins an actual color value for
each pixel by using the coverage value provide by the
R_fill module. Masking, Painting, Blending, and Anti-
aliasing are main functions of this module.
 In order to implement the Masking effect, the module
reads the alpha value from the mask image and multiplies
the alpha value by the coverage value. When the alpha
value is 0, the designated part of the shape will not appear.
The Blending effect is implemented using the color values
previously stored in the frame buffer and the new color
value to be painted. These two color values have their own

1634

3. 1 Evaluation Environment RGB and Alpha values. For Painting, the color value set by
the user is applied. After Masking, Blending, and Painting,
the final color value is determined in Antialiasing. Figure 5 describes how we test and evaluate our design. We

have tested and verified the functionality of our design
using Cadence NC-verilog simulator with the test vector
collected from the RI. The frame buffer data generated by
the accelerator has also been displayed by software.

 Since the PixelPipe module performs lots of arithmetic
operations, one of the main objectives in our design is to
develop efficient schemes for sharing the functional units
among these operations. Figure 4 illustrates the operation of
the PixelPipe module. The performance of the PixelPipe
module is affected by the size of the display device and the
size of the shapes to be drawn.

The designed accelerator has been synthesized using
Synopsys DesignCompiler with a 0.18um CMOS standard
cell library. Synopsys DesignWare library has also been
used in our simulation and synthesis.

 Post-synthesis simulation has also been performed using
Cadence NC-verilog simulator. It has been observed that
our current design operates correctly with 62.5MHz clock. . R_fill

x, y, cov
x, y, cov
x, y, cov
x, y, cov Masking

Painting

Blending

Antialiasing

(32bits)

Output
Queue

Memory interface
 unit

x,
 y

D
es

t,
M

as
k,

 S
ou

rc
e

C
ol

or

x, y, cov

Local memory

S/W
(R.I.)

H/W
accelerator

Edge data

Frame buffer data

Figure 4. Operation of PixelPipe

Figure 5. Evaluation Environment

3. 2 Results

The designed accelerator occupies approximately 0.40
million gates, excluding three SRAM modules. Each of the
4KB SRAMs costs about 17,500 gates. The cost of Arb/IF
unit is significant and depends on the rest of the system.

The performance of the accelerator depends heavily on
the complexity of the image. Figure 6 shows an example
motion image considered in the test. In Figure 6, only one
flower is moving. The designed accelerator can process the
images of size 640x480 pixels with moderate complexity
(with blending, and with less than 100 active edges per scan
line, etc) at the rate of 30 frames per second.

The proposed accelerator can also process the pictures
of size 1024x768 pixels with the same (moderate)
complexity at the rate of 18 frames per second.

2. 4 The Arb/IF Module

The Arb/IF module arbitrates the read and write requests
from other three modules as depicted in Figure 1. The
centralized arbitration scheme is used. The module also
provides the interface to the bus, which is the AXI bus
currently, and functions as a bus bridge. This module
depends on the rest of the system.

3. Evaluation
This section presents our test and evaluation methods and
the results that we observe.

Figure 6. An example motion image used (640x480)

1635

4. Conclusion
We have designed a prototype hardware accelerator for 2D
vector graphics applications based on the OpenVG standard.
One of our main design objectives is to develop schemes
for exploiting efficiently limited resources such as memory
bandwidth. The designed accelerator can process the
images of 640x240 pixels with moderate complexity at the
rate of 30 frames per second.

Our current design has been designed as an initial
reference design and is planned to be tested in a
multiprocessor SoC. Now we are working on including the
Tessellation stage into the hardware and improving our
current design. In this work, we have learned that there are
a wide design space for optimization. The planned
optimizations include optimizations in the algorithmic,
arithmetic, and architectural levels.

Acknowledgement
Authors wish to acknowledge the financial support of
ADChips Inc., Korea and the CAD tool support of IDEC
(IC Design Education Center), Korea.

References
 [1] S.-Y. Lee, S. Kim, J. Chung, and B.-U. Choi. “Scalable

Vector Graphics (OpenVG) for Creating Animation
Image in Embedded Systems,” Proc. KES2007, pp. 99-
108, 2007.

[2] D. Johansson and M. Socha. OpenVG for Mobile
Equipment, MS Thesis, Dept. of Computer Science, Lund
Institute of Technology, 2006

[3] R. Huang and S.-I. Chae. “Designing an OpenVG
accelerator: algorithms and guidelines,” Proc. ICCCE’06,
pp. 555-560, 2006.

[4] Khronous Group std., OpenVG, Khronous Group
Standard for Vector Graphics Accelerations, www.
khronous.org., 2005.

[5] http://www.khronos.org/openvg/

1636

http://www.khronos.org/openvg/

	Acknowledgement
	References

