
Automatic Test Pattern Generation for Multiple Stuck-At Faults: When Testing
for Single Faults is Insufficient

Conrad J. Moore1, Amir Masoud Gharehbaghi2, Masahiro Fujita3
VLSI Design and Education Center, University of Tokyo

Yayoi 2-11-16, Bunkyo-ku, Tokyo, 113-8656, Japan
E-mail : 1conrad@cad.t.u-tokyo.ac.jp, 2amir@cad.t.u-tokyo.ac.jp 3fujita@ee.t.u-tokyo.ac.jp

Abstract: As fabricated circuitry gets larger and denser, mod-
ern industrial ATPG techniques which focus on the detection
of single faults become more likely to overlook multiple (si-
multaneous) faults. Although there are exponentially more
multiple faults than single faults, previous works have shown
that given an initial set of test patterns for single faults, rel-
atively few additional tests are required in order to cover all
multiple faults.[1] The exact situations in which test patterns
generated by ATPG for single stuck-at (SSA) faults do not
detect multiple stuck-at (MSA) faults will be examined. This
will be done by presenting proofs which show the conditions
that need to be met such that ATPG for single faults can cover
all multiple faults. An analysis is then performed to determine
the exact conditions that, when removed from the circuit, vio-
late the assumption that ATPG for single faults will detect all
multiple faults. Finally, our proposed ATPG algorithm will
be explained.

Keywords—Automatic Test Pattern Generation, Double fault, Single
fault, Combinational logic

1. Introduction

There are techniques that are used for generating test patterns
which can efficiently detect all single faults in a circuit for in-
dustrial size designs. However, no practical techniques for the
detection of simultaneously occurring multiple faults exist for
large designs. It is possible to use similar techniques which
are used for single faults on an expanded problem space to in-
clude multiple faults, but this means an exponentially greater
number of faults must be considered. This method does not
work for circuits consisting of millions of gates.

Despite this, it has been shown that, given an initial com-
pact set of test patterns for SSA faults, the number of addi-
tional test patterns necessary to cover all MSA faults is not
significantly large.[1] Results using the &fftest function of the
testing and verification software ABC[2] are shown in Table
1. Note that some smaller circuits do not need additional test
patterns to cover multiple faults, and even the largest circuit
examined only needs about 13% more test patterns for full
coverage. On the other hand, some circuits require a signifi-
cant amount of extra testing.

This leads to the question about what specific circuit struc-
tures tend to cause ATPG algorithms for single faults to over-
look multiple faults. Two situations have been discovered
manually, but before those are covered, a proof of the neces-
sary conditions under which ATPG for SSA faults is sufficient
will be presented.

Table 1. Test patterns required for SSA faults and ABC gen-
erated tests including MSA faults.

Given Test Generated Test Additional
Circuit Patterns for Patterns for Necessary Test

SSA Faults MSA Faults Patterns
s27 5 5 0
s298 28 28 0
s386 64 64 0
s400 28 30 2
s444 25 26 1
s820 99 99 0
s832 101 104 3
s1196 117 117 0
s1238 130 153 23
s1423 25 31 6
s1488 108 108 0
s1494 110 112 2
s5378 102 108 6
s9234 134 297 163
s13207 250 319 69
s15850 116 141 25
s35932 30 103 73
s38417 120 182 62
s38584 174 197 23

2. When ATPG for SSA Faults is Sufficient
2.1 Definitions, Notations, Lemmas

A tree is a graph which is connected and contains no cy-
cles.[4] The following characteristics of a tree are implied by
its definition:
1. It has no cycles, and a simple cycle is formed if any edge
is added.
2. If any edge is removed, it is no longer connected.
3. Any two vertices can be connected, and the path connect-
ing them is unique.
4. If there are n vertices, then there are n-1 edges.
A binary tree is a tree in which each node has at most two
children nodes.
fi is a fault at location i. It is an element of the set of all SSA
faults, F1.
vi is the test vector which detects fi.
{fi, fj} is a double fault which consists of simultaneous faults
at locations i and j. It is an element of the set of all double
stuck-at (DSA) faults, F2.
A(vi) is the value of the signal at line A, given a non-faulty
circuit and input vector vi.
A(vi, fi) is the value of the signal at line A, given a circuit
with fault fi and input vector vi.
A(vi, {fi, fj}) is the value of the signal at line A, given a
circuit with double fault {fi, fj} and input vector vi.

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

159

Table 2. Truth table of NAND as a masking gate.
In Faulty In Out Faulty Out Mask?
00 D’D’ 1 0 No
01 D’D 1 1 Yes
10 DD’ 1 1 Yes
11 DD 0 1 No

Table 3. Truth table of NOR as a masking gate.
In Faulty In Out Faulty Out Mask?
00 D’D’ 1 0 No
01 D’D 0 0 Yes
10 DD’ 0 0 Yes
11 DD 0 1 No

D (1/0) represents a faulty signal which has been propagated
from some fault, and it is equivalent to the statement, The
logic value of the signal at this location should be 1, but due
to faults, it is 0.”
D’ (0/1) is the complement of D. These are the same D and
D’ which are used in the traditional D-Algorithm.[5]
The term masking gate will be used to describe the gate at
which, due to MSA fault or SSA fault with multiple propa-
gation paths, both of its inputs may have a faulty value. De-
pending on the expected values at the gate’s inputs, the faulty
signals may correct each other, thus ”masking” the fault.

Lemma 1: In order for any basic two-input gate
(AND/NAND/OR/NOR) to mask a MSA fault, the faulty sig-
nals which are propagated to its inputs by the respective faults
must both be faulty and of opposite polarity. In other words,
one input must be D, and the other must be D’.

Proof : Consider the truth tables of a NAND and a NOR
gate, including faulty signals. As shown in Tables 2 and 3,
the output in the faulty case matches that of the non-faulty
case only when the inputs are of opposite polarity. Note that
the truth table of an AND(OR) gate would be the same as
the NAND(NOR) but with inverted values in the ”Out” and
”Faulty Out” columns. All cases are considered in the truth
table. QED.

Note that the XOR gate is not a basic gate. If we use a
similar method to determine whether XOR can mask a dou-
ble fault, it does, in fact, mask every possible combination of
double fault. However, the internal structure of the gate vi-
olates the constraints which will be used in the proof, so we
initially do not consider them.

2.2 DSA Faults in a Tree Circuit

Proposition: Given a redundancy-free combinational circuit
in the form of a single-root binary tree graph, assuming basic
two-input gates with no fanout, at least one of the test vectors,
v1 or v2, which detect SSA faults f1 and f2 respectively, will
also detect the DSA fault {f1, f2}. This statement implies
that any set of test vectors which can detect all SSA faults
will also detect all DSA faults in the given circuit.

∀S ⊂ T, ∀{fi ∈ F1, fj ∈ F1} ∈

F2, Detect(vi, fi) ∧Detect(vj , fj) =⇒
Detect(vi, {fi, fj}) ∨Detect(vj , {fi, fj})

We propose that for all S, some set of test patterns, which is
a subset of T, all test patterns, and for all pairs of faults in
the circuit, at least one of the tests which detects each SSA
fault must also detect the respective DSA fault. Detect(v, f)
means test vector v detects fault f .

∀fi ∈ F1, vi ∈ S,Detect(vi, fi) =⇒ Complete(S, F1)

For any SSA fault, fi ∈ F1, given some test vector vi in
the set of test patterns S, if vi detects fi, then this implies
that SSA fault coverage is complete, which is represented by
Complete(S, F1).

∀{fi ∈ F1, fj ∈ F1} ∈ F2, (vi, vj) ∈
S,Detect(vi, {fi, fj}) ∨Detect(vj , {fi, fj}) =⇒

Complete(S, F2)

For all DSA faults, {fi ∈ F1, fj ∈ F1} ∈ F2, if vi or vj
detects the fault, then this implies that DSA fault coverage is
complete.

∀S ⊂ T,Complete(S, F1) =⇒ Complete(S, F2)

Therefore, our first statement is equivalent to saying that com-
plete SSA fault coverage implies complete DSA fault cover-
age.

Consider a circuit made up of NAND gates, without loss
of generality, as described in the above proposition. Let us
assume that there exists a DSA fault, {f1, f2}, which con-
sists of the two non-equivalent SSA faults, f1 and f2. Let
there be any pair of test vectors, v1 and v2, which detect f1
and f2 respectively. Note that while faults f1 and f2 are non-
equivalent, as a double fault consisting of equivalent single
faults is a trivial case, we do not assume anything about the
equality or inequality of vectors v1 and v2. Let us assume that
neither v1 nor v2 detects {f1, f2}. Because the circuit is a tree
with one root node, it is guaranteed that the propagation path
of one fault will intersect with the other and that there is ex-
actly one point of intersection. We can say this with certainty
because any two internal signals must somehow propagate to
the primary output.

We can ignore any case in which f2 lies in the path of f1
(or vice versa), because this is a trivial case in which v2 (or
v1 in the vice versa case) is sure to detect {f1, f2}. Figure 1
shows this case. If A is neither D nor D’, then f2 is completely
unaffected by f1. Similarly, if the fault effect of f2 matches
the signal at A, fault propagation will continue. The only pos-
sible means of blocking fault f1 is if f2 and the faulty signal at
A don’t match, but this would mean that the non-faulty value
of A wouldn’t have activated fault f2, which contradicts the
assumption that we are using a test vector which detects SSA
f2.

This means that the case which we must consider is when
f1 and f2 propagate to a masking gate, as shown in Figure
2. By lemmas 1 and 2, in order for this gate to mask the
double fault, the inputs of each gate must be D and D’ for
both v1 and v2 when the fault {f1, f2} is active. Let us refer
to the masking gate’s inputs as A and B. There are only two

160

Figure 1. Fault f2 lies in the propagation path of f1.

possible cases. Without loss of generality, the fault effect of
f1 at input A is either D or D’, assuming it is activated and
propagated. Let us consider both cases.

Case 1: The fault effect of f1 at input A is D (1/0)
1) The case assumption is:

A(v1, f1) = D

2) B is independent of f1, so its value can be assumed to be
non-faulty. Furthermore, a signal of 1 is required for the prop-
agation of SSA f1.

B(v1) = B(v1, f1) = 1

3) A is independent of f2, so when both are active simultane-
ously, A will act the same as if only f1 were active.

A(v1, {f1, f2}) = A(v1, f1) = D

4) We want to see if it is possible for fault masking to occur,
so we set the signal at B given v1 and the DSA fault to be
of opposite polarity to the faulty signal at A, as explained in
lemmas 1 and 2.

B(v1, {f1, f2}) = D′

5) Because B is independent of f1, its value when given the
same test vector and only the SSA fault f2 must be the same
as when both faults are simultaneously active. However, this
implies that when the signal at B(v1) is not faulty, it should be
0, by the definition of D’ (0/1). This contradicts our second
statement that B(v1) is 1 to continue SSA f1 propagation.
This is a contradiction, and it is impossible for the DSA fault
to be undetected in this case.

B(v1, f2) = B(v1, {f1, f2}) = D′

Case 2: The fault effect of f1 at input A is D’ (0/1)
1) The case assumption is:

A(v1, f1) = D′

2) Once again, B is independent of f1, and its value will not
be faulty in the SSA f1 situation. A signal of 1 is required for
the propagation of SSA f1.

B(v1) = B(v1, f1) = 1

3) A is independent of f2, therefore:

A(v1, {f1, f2}) = A(v1, f1) = D′

4) Assume fault masking is possible and set B given the DSA
fault to the opposite polarity of the faulty signal at A.

Figure 2. Propagation paths of f1 and f2 intersect at a mask-
ing gate.

Figure 3. Fault at r is redundant if it is not possible to simul-
taneously set r to 0 and s to 1.

B(v1, {f1, f2}) = D

5) Because B is independent of f1:

B(v1, f2) = B(v1, {f1, f2}) = D

6) Because A is independent of f2, and because A(v1) = 0
by the case assumption:

A(v1, f2) = A(v1) = 0

7) How the circuit should respond given v1 is now clear, and
so far it seems as though it is possible for the DSA fault to be
masked for this test vector. Whether or not it is also masked
given v2 must also be determined. Based on step 4, the faulty
value at B, should f2 be activated and propagated, must be D.
However, Case 1 shows that if the faulty value is initially D,
there will be a contradiction. No matter what, a contradiction
occurs.

B(v2, f2) = D

Both cases, one of which must occur, have been consid-
ered. In each case, a contradiction occurs if we assume that
an undetected DSA fault exists given a complete set of test
patterns for SSA faults. Therefore, there must not be any un-
detected DSA faults. QED.

3. When ATPG for SSA Faults is Insufficient
The essential characteristic of trees which makes the above
proof work is the fact that fanout and re-convergence of sig-
nals is not permitted. By allowing it, we can have more com-
plicated structures and gates, such as XOR, which make fault
masking possible. In addition, redundancies can cause issues
because they are ”hidden” as SSA faults but ”unlocked” as
MSA faults, and therefore they are overlooked.

In the example shown in Figure 3, it is assumed that an
input pattern which can both activate and propagate the fault
exist. However, in the case that simultaneous activation and

161

Figure 4. Example circuit in which DSA fault may be over-
looked. f1 and f2 are ”stuck-at 1” faults.

Table 4. Test vector 1001 detects both SSA faults, but it does
not detect the DSA fault.

abcd Fault t1 t2 o1 o2
10xx SSA 1, f1 D’ 0/1 D’/0 0/D
xx01 SSA 1, f2 0/1 D’ 0/D D’/0
1001 DSA 1, {f1, f2} D’ D’ 0 0
1000 DSA 1, {f1, f2} D’ 0 D’ 0
0001 DSA 1, {f1, f2} 0 D’ 0 D’

propagation are not possible, the fault at location r becomes
redundant. This fault will be ignored by ATPG. For example,
assuming only single faults, the activation of sa1@r always
results in a value of 0 at s. However, if we also have sa1@s,
the previously untested redundant fault, sa1@r, is now irre-
dundant as a DSA fault, {sa1@r, sa1@s}, and it may not be
detected by the set of test vectors.

In the previous proof, we assumed a circuit with no fanout.
However, many circuits will violate this assumption. One ex-
ample of a DSA fault which may be undetected due to fanout
is shown in Figure 4 and Table 4. ATPG tools may notice that
the test vector 1001 will detect both stuck-at 1 faults at loca-
tions f1 and f2. However, this test vector will not detect the
case when both of the faults are simultaneously active. Fur-
thermore, the DSA fault is not redundant, as either of the tests
1000 or 0001 will detect it. In other words, this DSA fault
could potentially slip through the testing phase undetected.

4. Potential Solution
One of the main issues with using ”single fault ATPG” for the
detection of multiple faults is that a second fault may some-
how interfere with the propagation of the first one. Therefore,
we propose an algorithm similar to the one used in [3]. The
premise is that, given some DSA fault {f1, f2}, as long as f2
does not interfere with the propagation of f1, f1 will be de-
tected, and therefore {f1, f2} will also be detected. The algo-
rithm focuses on putting path constraints on the circuit such
that a fault is guaranteed to propagate to a primary output.
Once a test pattern is found for some fault and the constraints
are in place, any other fault which may interfere with the con-
straints can easily be identified and dealt with. Note that this
algorithm works for detection, not diagnosis, of DSA faults
using ATPG for SSA faults. Furthermore, this method does
not work if one of the faults is redundant. Therefore, the tar-
get circuit for this algorithm will be used for non-redundant
designs. It is currently incomplete, but a brief explanation of
the algorithm is as follows:
1. We consider a compacted set of faults, including only pri-

mary inputs and fanout wires.
2. Double faults in which both faults are on the same gate are
not considered, because there is an equivalent single fault.
3. Generate a list of all eligible SSA faults.
4. Pick a ”focus fault”, fi (If possible, give high priority to
faults at fanout wires closest to primary outputs and low pri-
ority to primary inputs).
5. Generate a test pattern, vi, for fi.
6. Based on fi and vi, find the necessary path constraints for
the fault propagation.
7. Find SSA faults which violate the constraints.
8. Add all DSA faults which consist of the focus fault paired
with each of the path constraint violating faults to a list of
undetected DSA faults.
9. Remove focus fault from list of remaining SSA faults.
10. If there are remaining SSA faults, repeat from step 4.
11. Else if there is a manageable amount of DSA faults in
the list of undetected DSA faults, do simple fault simulation
ATPG for each fault.
12. Else quit.

This is a tentative algorithm, and experimentation is still
necessary to determine the best implementation.

5. Conclusion and Future Work
The main purpose of this paper was to analyze the necessary
conditions in which single fault ATPG is insufficient for mul-
tiple fault detection. Further, a potential solution in its early
phases is presented. The current focus of this research is the
experimentation and implementation of the proposed algo-
rithm. If possible, generating the constraints before the test
vector (see steps 5 and 6 above) would be useful because it
would allow multiple propagation paths to be activated. How-
ever, there may not be a test vector which can satisfy the cho-
sen constraints, and thus it may lead to longer runtime. Also,
a DSA fault which is not covered at one point in the algorithm
may be covered later. It may be worthwhile to periodically
check if any of the remaining DSA faults have been covered
before exiting the loop. Finally, there is still the issue of how
to deal with redundant (both SSA and DSA) faults.

References

[1] M. Fujita, A. Mishchenko, ”Efficient SAT-based ATPG
Techniques for All Multiple Stuck-At Faults,” Interna-
tional Test Conference, Oct. 2014.

[2] R.K. Brayton, A. Mishchenko: ABC: An Academic
Industrial-Strength Verification Tool, 22nd International
Conference on Computer Aided Verification (CAV 2010),
pp. 24-40, 2010.

[3] Y. Matsunaga, ”A minimum test pattern set generation for
large circuits,” Inst. of Electron., Inf. and Commun. Engi-
neers, VLD2015-1, 2015.

[4] R. Balakrishnan, K. Ranganathan, Chapter 4: Trees In
A Textbook of Graph Theory (pp. 73-94). New York:
Springer, 2012.

[5] J.P. Roth, “Diagnosis of Automata Failures: A Calculus
and a Method,” IBM Journal of Research and Develop-
ment, vol. 10, no. 4, pp. 278-291, 1966.

162

