
A New Culling Scheme for Low Power 3D Graphic Processors

Chanho Lee1 and Kyeongeun Choi2
1 School of Electronic Engineering, Soongsil University, Seoul, Korea

511 Sangdo-dong, Dongjak-Gu, Seoul, Korea
E-mail: chlee@ssu.ac.kr

2 Samsung Electronics, Suwon, Korea

Abstract: Recently, portable devices employ applications
using 3D graphics such as 3D games and 3D navigations.
The portable devices require small area and low power
consumption. We propose an efficient culling scheme for
low power 3D graphics processors. The proposed culling
scheme consists of the selection and back-face culling in
the geometry engine and the elimination of pixels outside in
the rasterizer engine. The new scheme reduced both the
hardware complexity and the number of operation cycles of
culling operations. We design a 3D graphic pipeline using
Verilog-HDL according to the proposed scheme, and verify
it on an FPGA prototyping board. The latency of the
proposed architecture is reduced by 15 cycles and the gate
count of the synthesized result is reduced by 8%.

1. Introduction
3D graphic processing represents the generation of 2D
images from 3D objects, virtual camera, light sources,
lighting models, and textures, and is also called rendering
[1]. The 3D graphic processing had required high
performance workstation for 3D graphic accelerators with
3D graphic software. Nowadays, personal computers have
3D graphic accelerators, and can show realtime 3D graphic
processing and animation [2]. Recent development of 3D
graphics hardware for mobile environment enables the
production of digital contents based on 3D graphics which
is more attractive than those based on 2D graphics. More
mobile devices such as cellular phones, PMP, and PDA
start to employ 3D graphic contents [3]. 3D graphic
processing requires much more arithmetic operations than
2D graphics due to the complex processing algorithm.
The conventional 3D graphic processors for workstations or
personal computers work with high performance CPUs and
practically unlimited power is supplied. However, mobile
devices have limited power supplied by batteries which
requires low energy operation and the mobile
microprocessors may not share enough computing power
with the 3D graphic processors. The 3D graphic processing
for mobile environment cannot employ the same algorithm
as that in the desktop environment [1]. An efficient
architecture can reduce the load of an embedded processor
and energy consumption.
The conventional clipping algorithm in the geometry engine
generates a new vertex using vertices inside and outside the
clipping window when a triangle or a line crosses the
boundary, and requires a lot of arithmetic calculation which
results in many operation cycles or arithmetic units.
In this paper, we propose a new culling scheme which
substitutes the conventional clipping and back-face culling
methods. The proposed culling scheme is performed by a

cull-and-sort unit and scan conversion engine in the
rasterizer as shown Figure 1. The cull-and-sort unit detects
triangles which are completely outside the clipping window
and removes them. If part of a triangle is inside the clipping
window, it is removed in the edge walk and the span
processing of the scan conversion engine. Triangles are set
up by the cull-and-sort unit of the geometry engine instead
of the scan conversion stage, and back-face culling is
achieved simultaneously. The culling in the scan
conversion unit requires only several comparators, and the
increase in area is minimal. We design a 3D graphic
pipeline according to the proposed scheme, and verify the
operation.

Figure 1. Proposed culling scheme for fixed 3D graphic

pipelines

2. Proposed Algorithm
2.1 Conventional Clipping algorithm
The rasterization requires a lot of arithmetic units and
operation cycles. A viewer or camera can capture a limited
range of volume due to the limited view angle. Therefore,
the rasterization of the 3D objects outside the clipping
window is useless, and the objects or polygons may be
eliminated before delivered to the rasterization engine. It is
the goal of clipping operation. The position of a polygon is
investigated using the coordinates of vertices if it is kept,
removed, or modified by generating new vertex (or
vertices) in the conventional clipping algorithm. The

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

1501

polygons totally outside the boundary are eliminated.
Cohen-Sutherland algorithm [4] and Liang-Barsky
algorithm [5] for 2D clipping operation was combined and
extended to 3D clipping algorithm [2]. It requires complex
operation for reconstruction of triangles in the clipping
window if a triangle intersects a clipping boundary, and
often causes the generation of additional triangles as shown
in Figure 2. The additional triangles cause pipeline stall in
geometry engine and the increase of the number of vertices
to be delivered to the scan conversion unit [7].

Figure 2. Conventional clipping algorithm which generates

new vertices.

2.2 Cull-and-Sort unit
The most complex calculation in the conventional clipping
algorithm is the generation of new vertices for the triangles
which crosses a boundary of the clipping window. The
proposed algorithm removed the operation, and introduces
a cull-and-sort unit which calculates flag information
according to Cohen-Sutherland algorithm [4], and the
information is used to determine the location of vertices.
The cull-and-sort unit checks if a triangle is completely
outside the clipping window (or view frustum) or at least
one vertex is inside. The triangles completely outside the
window are eliminated and are not transferred to the scan
conversion unit as shown in Figure 3. The box in the Figure
3 is a view frustum and five triangles which are located
outside the box are eliminated, and one triangle which is
inside the box is delivered to the scan conversion unit. Two
triangles are intersects at least one boundary of the box. The
conventional algorithm generates new vertices on the
boundary surfaces and reconstructs new triangles, which
results in four triangles. The proposed algorithm delivers
the two triangles without any modification. The operation is
quite simple and does not increase the number of vertices
and triangles. The back-face culling can also be completed
at the same time.
Since a triangle needs to be set up for the clipping operation,
the cull-and-sort unit does the job so as to reduce the
burden of the triangle setup unit of scan conversion engine.
The mapping transformation is merged with the projective
transformation so as for the triangles to be transferred from
the cull-and-sort unit to the scan conversion engine directly.
As a result, the complexity of the geometry engine is
lowered. The architectural enhancement enables the
geometry engine to perform culling action in a cycle and to
avoid the pipeline stall to the end of geometry calculation.

(a)

(b)

(c)
Figure 3. Comparison of cull and sort unit with the

conventional clipping method. (a) Before culling. (b)
Proposed. (c) Conventional.

2.3 Edge walk with Y-axis culling
Edge walk unit determines the colors and the coordinates of
edges which are start and end points of spans while
increasing Y-axis values by one. At least one vertex is
inside the clipping window since triangles outside the
clipping window are already eliminated. Y-axis culling is
obtained by adding a comparator unit in the proposed
scheme. The normal edge walk process is performed for
each pixel in the edge, and then the y-axis value of the pixel
is compared with that of the boundary. If the position is
outside the boundary, the edge walk process is stopped as
shown in Figure 4.

Figure 4. Result of Y-axis culling using the edge walk unit.

2.4 Span processing with X- and Z-axis culling
Span processing unit determines the colors and the
coordinates of spans while increasing X-axis value by one,
which fills colored pixels inside a triangle. X-axis and Z-
axis culling are obtained by adding two comparators in the
proposed scheme. A span may include pixels outside the
clipping window since the x-axis value of the pixels in the
edge is not investigated. The x-axis values and z-axis
values are compared with those of the boundary during the

1502

normal span processing, and the processing is stopped when
a pixel is determined to be outside the boundary as shown
in Figure 5. The culling process in the scan conversion unit
loads little burden with three comparators and the
corresponding propagation which may be negligible.

 Figure 5. Result of span processing including X- and Z-
axis clipping

3. Design and Verification

We design a fixed 3D graphic pipeline accelerator based on
the proposed culling scheme using Verilog-HDL, and
implement it on an FPGA. Table 1 shows the comparison
results of synthesized area and pipeline latency of a
conventional 3D graphic engine and the proposed 3D
graphic engine. The engines are synthesized using
Synopsys Design Compiler and a 0.25um CMOS standard
cell library at the target operating frequency of 100MHz.
The latency is decreased from 47 cycles of the conventional
scheme to 31 cycles of the proposed scheme, which is the
improvement of 34%. The synthesized area of the
conventional geometry engine is 89,100 gate counts while
that of the proposed engine is 63,300 gate counts, which is
improvement of 29%. The synthesized area of the scan
conversion unit is slightly increased from 172,300 gate
counts to 177,880 gate counts, which is the increment of
3%, due to the addition of culling function. The overall area
is decreased from 261,300 gate counts to 241,000 gate
counts, which is the improvement of 8%.
The proposed 3D graphic engine is verified in a verification
system using a Xilinx Virtex5 FPGA as shown in Figure 6.
Test vector are composed of four models of Pawn, Sphere,
Cone, and Torus with the number of vertices of 1,518, 504,
504, and 1,020, respectively. An ARM processor provides
the 3D model data the transformation engine with the cull-
and-sort unit, the calculated vertex data are returned to the
processor. The processor supplies the vertex data and color
information to the scan conversion unit with the culling
function. The final pixel data are transferred to a TFTLCD
controller for display. The results show that the proposed
scheme works fine as shown Figure 7.

Table 1. Comparison results of conventional 3D graphics
engine and proposed 3D graphics engine

Figure 6. Block diagram of verification system

Figure 7. The image of the verification system

4. Conclusion
We propose a new efficient culling algorithm for low power
3D graphic pipelines, and verify it by designing and
implementing a system based on the proposed algorithm.
The complex clipping operation which requires many
operation cycles and arithmetic units is divided into two
stages. The first stage in the geometry engine eliminates
triangles completely outside the clipping window, and the
operation is quite simple. The second stage in the scan

Conventional
Architecture[7]

Proposed
Architecture

Area
[gates]

Latency
[cycle]

Area
[gates]

Latency
[cycle]

Transformation 56,900 18 56,900 18

Clipping 32,100 16~49 6,300 1

Triangle setup 90,800 10 90,700 9

Edge walk 69,500 2 71,500 2

Span
processing

12,000 1 15,600 1

Total 261,300 47 241,000 31

1503

conversion unit eliminates the pixels outside the clipping
window with only three additional comparators and without
any extra operation cycles to the normal scan conversion
operation. The proposed algorithm can reduce the area and
latency of 3D graphic pipelines. A 3D graphic pipeline is
designed using Verilog-HDL and implemented on an FPGA.
The implementation results show that the proposed
algorithm reduces the area and the latency by 8% and 34%,
respectively, compared with the conventional algorithm.

Acknowedgmentt

This work was supported by Seoul R&BD Program and
EDA tools were supported by IDEC.

References
[1] Gopi K. Kolli, "3D Graphics Optimizations for ARM

Architecture", Game Developers Conference, San Jose,
CA, March 2004.

[2] Tomas A. Moller and Eric Haines, "Real Time
Rendering", A K Peters, p.30, p.95-96, 2002.

[3] Eungon Lee, “Effects of 3D graphics on the experience
of customers in on-line shopping mall with virtual
reality,” Master's thesis, Yonsei University, Febrary, 2003.

[4] F. Devai, “An analysis technique and an algorithm for
line clipping", IEEE Conference on Information
Visualization, pp.29-31, July 1998.

[5] Y-D. Liang and B. Barsky, “A New Concept and
Method for Line Clipping", ACM Transactions on
Graphics, vol.11, pp.276-290, January 1984.

[6] Jeemyeong Lee, “Design of geometry engine for mobile
2D/3D graphic pipelines,” Master's thesis, Soongsil
University, June, 2007.

1504

