
A Video Decoder Components Verification Scheme based on Transaction-level

Information to Randomized Behavioral-level Operations Transformation

Jiayi Zhu, and Shinji Kimura

Graduate School of Information, Production and Systems, Waseda University

2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 807-0135, Japan

E-mail: jzhu@aoni.waseda.jp

Abstract: Verification of video decoder is a difficult work.

Even each component of the decoder is so complex that

takes a lot of time to verify.

In this article, we propose a video decoder components

verification scheme based on the collaborations between

reference software and VLSI test-bench. In the scheme,

verilog models of DUT’s neighbors translate the

transaction-level information generated by the reference

software to behavioral-level operations which interact with

the DUT component. In addition, timing of the behavioral-

level operations of these verilog models are randomized to

improve the verification efficiency.

Our experience shows that once the DUT components

pass the verifications under this scheme, the possiblitiy they

fail in the verification of the whole decoder is low.

Keywords—randomized behavioral-level operations,

video decoder verification, transaction-level information

1. Introduction

Video compression technology keeps development in last

decades. Various standards like MPEG-2, MPEG-4, H.263,

H.264, and HEVC have been developed. The newer stand-

ards have better performance in video compression than

previous standards. Once one standard is developed, many

researchers and engineers devote into the high performance

VLSI video decoder implementations.

The design of VLSI video decoder is full of challenges

because of its large scale. Especially, with the people’s

quick rising demand for higher resolution and frame rates,

the, the scale of VLSI video decoder becomes larger and

larger. Even the components of video decoder like motion

compensation, de-blocking filter et al. are quite complex

digital logic.

Stimul
us

DUT

Model

Peripherals
state-1

Compare

state-2
Peripherals

Compare

Figure 1. An example of Verification for digital VLSI

design

For such large scale of logic, verification is always the

critical bottleneck and occupies most of its development

time. People invent many verification methods for large

scale digital logic verification. One example is shown in

Figure 1. The basic feature of these kind of verification

scheme includes 1. It generates randomizing stimulus; 2. It

compares the output of DUT (design under test) and the

model which has the same function; 3. It also compares the

states stored in the peripherals connected to the model and

DUT to confirm that the function of DUT is correct.

Although the methods work well for many designs,

they are not completely suitable for video decoder due to

the following reasons:

 The effective stimulus of the video decoder are bit-

streams conforming to the video compression stand-

ards. As a consequence, large amount of bit-streams

designed particularly for the purpose to verify large

amount of DUT corner cases are needed. However,

these kind of bit-streams are uneasy to design and

hence they are expensive to obtain. It is difficult for

people to prepare enough bit-streams covering as

many as possible corner cases to various DUT.

 The second reason is that the reference software mod-

els of video decoder components are quite complex.

Therefore, only the officially released software models

are regarded as authoritative models. For example,

when we design the VLSI decoder of HEVE, all the

output of our design shall be compared with the output

of HM, which is the HEVC official software model.

Only if output of our design is same to that of HM,

then we can regard that the design maybe correct. All

other models, especially designed by the design owner

or the verification owner himself, are not regarded as

authoritative.

 The third feature is that, not only each component

itself is complicated. The system overall is even com-

plicated.

Therefore, we propose a scheme for decoder verifica-

tion in this article. Our work is based on the basic model as

shown in Figure 1, with some particular improvements for

the decoder verification. To illustrate the proposed scheme,

we use the HEVC In-Loop Filter shown in Figure 2, which

contains deblocking filter and SAO (Sample Adaptive

Offset), as the DUT example. As shown in Figure 2, the

input of deblocking filter is reconstructed picture and

deblocking filter parameters. The output of deblocking

filter is the deblocked picture. The input of SAO is

deblocked picture and SAO parameters. The output of SAO

the the picture after SAO, i.e. the decoded pictures. The

deblocking filter and SAO together form the in-loop filter

of HEVC decoder.

The feature of our proposed verification scheme is as

following:

 Software-hardware cooperated verification

 Intermediate transaction-level information

 Randomizing behavioral-level operation timing

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

147

deblockin
g filter

SAOPRED

SAO Param
CABAC

IQ/IT

Deblocked
Picture

Picture
after SAO

Bitstre
ams

Reconstructed
Picture

deblocking filter Param

In-Loop Filter

HEVC Decoder

Figure 2. In-Loop Filter in HEVC Decoder

 Peripherals can be replaced by other DUT to form the

whole video decoder.

The rest of the article is organized as following: Sec-

tion 2 talks about our proposed scheme. Section 3 talks

about the trial performance of our proposal. Section 4 con-

cludes this article.

2. Proposed Scheme

2. 1 Overview and verification flow

As mentioned above, we take the deblocking filter and

SAO of HEVC decoder as example, which is shown in

Figure 2.

 To verify the two components (deblocking filter and

SAO), three factors are needed: the stimulus, peripherals,

and output compare mechanism. The overview of the

proposed scheme is shown in Figure 3. The upper half is

the reference software part. The lower half is the DUT part.

 The stimulus are "Reconstructor model", "DBF param

model", and "SAO param model" in the lower half of

Figure 3. The three models read files recording

transacation-level information, which are generated by the

software when it decodes bit-streams.

 The periphrals in the example of Figure 3 is in the

"Receiver model & compare". The receiver model interact

with the SAO DUT and accept the output data of SAO.

 The output compare mechanism is the "Monitor &

compare" and "Receiver model & compare". The former

one compares the output of deblocking filter DUT with the

output of deblocking filter in official reference software

model. The latter one compares the output of SAO DUT

with the output of SAO in official reference software model.

Any unconsistence found, then the simulation stalls, which

means it is possible that there exist bugs in the design.

2. 2 The basic verification flow

 Input a bit-stream "Bit-stream" to the official

reference software model and run the software, as

shown in the upper half of Figure 3.

 Obtain five files which are printed out by the official

reference software model, as shown in the upper half

of Figure 3. The five files are "Reconstructed Picture",

"deblocking filter param", "Deblocked Picture", "SAO

param", and "Picture of SAO". In these five files, the

transaction-level information are recoded. For

example, in "SAO param", for each CTU, the SAO

parameters like sao_merge_left, sao_merge_upper,

sao_type_luma, sao_type_chroma, sao_start_band_

position_luma, ... are recorded. These data are read out

by the "SAO param model" in the lower half in Figure

3.

 Three models (Reconstructor, DBF param, SAO

param) shown in the lower half of Figure 3 read the

corresponding files obtained in last step and turn the

transaction-level information to behaviral operations

which directly interact with the DUT (deblocking

filter and SAO).

 When the DUT works, the “Monitor & Compare”

module in Figure 2 monitors the output of deblocking

filter and compare it to the data read from the file

“Deblocked Picture”. It stops and warns once

unconsistency found in comparsion.

 When the DUT works, the “Receiver model &

Compare” module in Figure 2 receives the output of

SAO and compare it to the data read from the file

“Picture after SAO”. It stops and warns once

unconsistency found in comparsion.

 If reference software finish the decoding of a whole

bit-stream and all the generated files are read to the

bottom and no warns are reported, then we judge that

this bit-stream pass the test.

2. 2 Randomizing behavioral-level operations timing

The behavioral-level operations of the models of DUT’s

neighbors shall be randomized. It means that the behavioral

of the model is not fixed. All the signals of the model inter-

face can be any possibility as long as it is allowed accord-

ing to the protocol.

148

deblockin
g filter

SAO

In-Loop Filter

Reconstructor
model

DBF param
model

SAO param
model

Receiver
model &
Compare

Bit-
stream

Picture
after SAO

Reconstruc
ted Picture

deblocking
filter param

Reference Software

SAO param
Deblocked

Picture

Monitor &
Compare

Deblocked
Picture

Information

verilog
models

DUT

Figure 3. Framework of HEVC In-Loop Filter Verification Scheme

 One example to illustrate it is shown in Figure 4, suppose

model X is one neighbor of DUT Y and their connections

are three signals (WE_N, WACK, and WDATA) as shown.

Model
X

DUT
Y

WE_N

WACK

WDATA

Figure 4. DUT Component and one of its neighbor

 The model X output two signals: “WE_N” and “WDA-

TA”. Its behavioral operations shall be randomized means

that the timing of model X output can be any legal case. For

example, as shown in Figure 5 and Figure 6, the operations

of “WE_N” in the two figures are different but both are

legal. In Figure 5 “WE_N” is ineffective in clk0 and effec-

tive in clk1, clk2, and clk3. “WACK” is effective in clk0,

clk1, and clk3. It is ineffective in clk2. Hence, in clk1 and

clk3, both “WE_N” and “WACK” are effective and

“WDATA” are successfully transmitted. In Figure 6, the

operation of “WE_N” is different with that in Figure 5, it is

effective in clk0, clk1, and clk2. It is ineffective in clk3.

“WACK” is effective in clk0 and clk2. It is ineffective in

clk1 and clk3. Therefore, “WDATA” are successfully

transmitted in clk0 and clk2, in which both “WE_N” and

“WACK” are effective.

It is meaningful to enable all the model output opera-

tions be possible. The following Verilog is use to enable the

function:

‘while({$random}%(A)>=B) @(posedge clk);

 The parameters "A" and "B" are two parameters deciding

the possibility that the condition is satisfied. B should be

less than A, otherwise the condition is always false. For

example, if A is set to be 10 and B is set to be 5, then

{$random}%(A) generate a number between 0-10 with

equal possibility for each value. If {$random}%(A) is 5, 6,

7, 8, 9, 10, then the condition is true. If {$random}%(A) is

0, 1, 2, 3, 4, then the condition is false. The possibility of

condition true is 6/11. If set A to be 9 and B to be 5, then

the possibility of condition true is 50%. When the condition

is false, then one clock cycle is ticked. Otherwise, the

statement is passed and the following code will be executed.

successsuccess

WE_N

CLK

WACK

WDATA D_0 D_1

0 1 2 3

Figure 5. WE_N operation case 1

successsuccess

WE_N

CLK

WACK

WDATA D_0 D_1

0 1 2 3

Figure 6 WE_N operation case 2

149

Receiver model &
Compare

Picture
after SAO

Reconstructor

mcwp
model

INTRA
model

IT model
Cabad
Param

Reference Software
Bit-

stream

Cabad
param

mcwp
output

it output
intra pred

output
deblocking

filter param
SAO param

Deblocked
Picture

deblockin
g filter

SAO

DBF param
model

SAO param
model

Monitor &
Compare

Figure 7 Expanded framework to verify deblocking filter, SAO and reconstructor

2. 3 System-level expand in verification

This verification scheme can be used to verify all other

components in our HEVC decoder chip [2]. It is expanded

to include multiple components in the scheme. As shown in

Figure 7, the reconstructor is also verified together with

deblocking filter and SAO.

 The reconstructor model in Figure 3 is replaced by the

reconstructor DUT shown in Figure 7. In order to make the

reconstructor DUT work, four models serve as the stimulus

are created. They are “Cabad Param”, “mcwp model”, “IN-

TRA model”, and “IT model” shown in Figure 7. The data

of these models are from the files generated by the refer-

ence software, which records the transaction-level infor-

mation of corresponding data.

 The scheme can be extended to more other components

and finally the whole decoder can be included. This scheme

allows the components to be verified in the same time re-

spectively. After the verification of each components are

verified, multiple components are connected and then veri-

fied. The files recording the transaction-level information

can be used not only for verification of individual compo-

nents, but also for the verification of the whole decoder.

3. Experimental Result

This verification scheme is used to verify all the compo-

nents in our HEVC decoder chip [2]. We tested 404 bit-

streams. Under the condition that the interface between

DUT and its neighbors’ model is same to the interface be-

tween DUT and its real neighbors, the proposed scheme

does not miss a bug. If all the components pass all of these

bit-streams, then after they are connected, the possibility

that the whole decoder pass the test is high.

4. Conclusion

In this article, we propose a verification scheme for the

verification of video decoder. The idea is to use models to

translate transaction-level of information generated by ref-

erence software to behavioral-level operations which inter-

act with DUT. Another important point is to randomize the

behavioral-level operations timing, which allows various

corner case to happen and increase the possibilities to find

bugs. In addition, our scheme can verify all the components

within the decoder and it eases the verification of the whole

video decoder.

References

[1] B. Bross, W.-J. Han, G. J. Sullivan, J.-R. Ohm, and T.

Wiegand, “High Ef-ficiency Video Coding (HEVC) text

specification draft 8”, document JCTVC-K1003, Joint

Collaborative Team on Video Coding (JCT-VC) of ITU-T

SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 11th

meeting, Shanghai, CN, 10-19 September 2012.

 [2] Dajiang Zhou, Shihao Wang, Heming Sun, Jianbin

Zhou, Jiayi Zhu, Yijin Zhao, Jinjia Zhou, Shuping Zhang,

Shinji Kimura, Takeshi Yoshimura, and Satoshi Goto, “A

4Gpixel/s 8/10-bit H.265/HEVC Video Decoder Chip for

8K Ultra HD Applications”, International Solid-State Cir-

cuits Conference (ISSCC), pp. 266-268, 31 January - 4

February 2016.

[3] Jiayi Zhu, Dajiang Zhou, Gang He, and Satoshi Goto,

“A combined SAO and de-blocking filter architecture for

HEVC video decoder”, IEEE International Conference on

Image Processing (ICIP), pp. 1967-1971, 15-18

September 2013.

[4] Jiayi Zhu, Dajiang Zhou, and Satoshi Goto, “A High

Performance HEVC De-Blocking Filter and SAO

Architecture for UHDTV Decoder”, IEICE Transactions

on Fundamentals of Electronics, Communications and

Computer Sciences, vol. E96-A, no. 12, pp. 2612-2622,

December 2013.

150

