
High performance and low design cost TLB for MIPS32 processor

Takahiro SASAKI1, Gun MUTO2∗, Yuki FUKAZAWA3 and Toshio KONDO4

1,2,3,4Department of Information Engineering, Mie University
∗Currently with Akatsuki Inc.

1577 Kurimamachiya-cho, Tsu city, Mie prefecture, 514-8507, Japan
E-mail : {1sasaki, 2muto, 3fukazawa, 4kondo}@arch.info.mie-u.ac.jp

Abstract: TLB (Translation Lookaside Buffer) is one of the
key components which affects performance and circuit scale.
To improve performance of TLB, it is effective to increment
the number of entries. However, because MIPS32 processor
adopts CAM based TLB, increasing TLB entry causes serious
enlargement of circuit scale. Furthermore, MIPS32 ISA lim-
its the TLB entries up to 64. This paper proposes two meth-
ods to break the limitation; one is new approach to implement
TLB using RAM for small footprint, and another is adopting
a dynamic code analyzer to handle more than 64 TLB entries
while keeping binary compatibility. According to the evalua-
tion results, the proposed approach improves hit rate by 20%
at the maximum, 6% in average, and reduces area by 29%.

Keywords—Processor architecture, TLB, RAM, CAM, MIPS32

1. Introduction
In recent years, superscalar processors that fetch and run mul-
tiple instructions at once attracts attention with the need for
high-performance embedded processor. In order to research
and develop a superscalar processor, it is required that de-
signer can change the processor design implemented by HDL
(hardware description language) easily. To meet above de-
mand, FabScalar has been proposed[1]. FabScalar gener-
ates HDL design of various superscalar core by passing a pa-
rameter file which describes parameters such as fetch width,
pipeline length and issue queue size. Although FabScalar sup-
ports variety of instruction sets, this study focuses on MIPS32
base processor that is widely used in research fields and em-
bedded devices.

General-purpose processor, including MIPS32, has the
high speed buffer called TLB (Translation Lookaside Buffer)
in the processor to translate virtual address to physical address
promptly to support virtual memory mechanism. In MIPS32
ISA, the TLB is required to be constructed by CAM (Con-
tent Addressable Memory). However, CAM has a problem
that design cost is very high because design effort of it is very
high and circuit scale is large. In contrast, a RAM can be de-
signed easily using memory macros or a memory compiler.
Although CAM can be written in register transfer level (RTL)
and be synthesized, the area of CAM designed with standard-
cell is very large because search key and bit width of TLB are
large.

Hence, this study proposes an implementation methodol-
ogy of a pseudo CAM approach TLB using only standard-
cell and RAM macros. This methodology realizes almost
same behavior as CAM approach TLB which is used in orig-
inal MIPS32. However, this methodology compliant to spec-
ification of MIPS32. Therefore, it is impossible to achieve

better performance than the original MIPS32 TLB. In gen-
eral, hit rate of TLB raise and memory access performance is
improved by increasing TLB entries. Because the proposed
pseudo CAM approach is small footprint, TLB entries can
be increased with low cost. However, MIPS32 ISA limits
the maximum TLB entries to 64, so increasing TLB entries
breaks binary compatibility. To achieve better performance
than the original MIPS32 TLB, this study also proposes dy-
namic code analyzer for more than 64 TLB entries. The pro-
posed approach supports more than 64 entries without exist-
ing firmware or operating system (OS) modification by ana-
lyzing executing code and compensating the difference of be-
havior between the original MIPS32 TLB and our large TLB.
This study implements proposed two approach and evaluates
its effectiveness. According to the evaluation results, the pro-
posed approach improves hit rate by 20% at the maximum,
6% in average, and reduces area by 29%.

2. Related Works
Because a CAM is widely used in not only processors but
also network routers, encoder/decoder hardware and so on,
effective implementation methods of CAM are proposed.

Hong proposes binary-tree-based pseudo CAM design[2].
This approach achieves compact CAM implementation.
However, access latency is not so short because the approach
adopts binary tree trailing. TLB is required to access in one
cycle, so this approach is not suitable for TLB implementa-
tion.

Fully CAM implementation methods for FPGA is also pro-
posed[3], [4], [5]. This approach implement a true CAM
function. However, circuit scale is in proportion to square of
pattern length (that is bit width of virtual address without page
offset in a TLB). Therefore, using this approach enlarge cir-
cuit scale dramatically. Reference[6] implements superscalar
processor using CAM implementation method proposed in
[3], [4]. However, the processor does not have a MMU, and
no TLB is implemented.

Similar to our approach, references[7], [8] use RAM
macro to implement a CAM. However their target is TCAM
(Ternary CAM) and access time is not one cycle, so it is not
suitable for TLB.

Some FPGA products[9], [10] have hardware CAM
macros. For example Altera APEX20 series has CAM macro
in the ESB (Embedded System Block) and enable to imple-
ment a hardware CAM. Using these hard macro, TLB can be
implemented easily[11]. However, most modern FPGA prod-
ucts does not have hardware CAM macros, and even if the
device has hardware CAM, the processor design is dedicated

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

141

a specific FPGA products. Our approach can apply to almost
all FPGAs and ASIC design flow.

3. Pseudo CAM type TLB using RAM
As mentioned above, a TLB constructed by a CAM is large
circuit scale. In order to reduce the circuit scale, we propose
a pseudo CAM type TLB using RAM macros[12],[13]. Fig-
ure 1 shows the basic idea. This approach is similar to set
associative cache system, but we introduce 1)hash function
and 2)index table. We implement a TLB using RAM instead
of CAM. Like a general set associative cache system, LRU is
used to select a bank to replace.

The number of TLB entries denoted as M and the number
of ways in the Figure is independent from MIPS32 ISA. If
M or the number of ways become large, the TLB hit ratio is
close to the original MIPS32 TLB based on CAM. Accord-
ing to our preliminary simulation results, 2-way 64entry TLB
can achieve almost same performance to the original MIPS32
TLB. Therefore, in this paper, we use above parameters.

3.1 Hash function

Generally cache memory is accessed using index address
which is part of memory address. However, because the num-
ber of TLB entries is up to 64 because of MIPS32 ISA lim-
itation, if we adopt index approach, which is same to cache
system, into TLB, conflicts which causes large performance
degradation occur frequently. So we introduce hash function
to disperse TLB entry to the whole TLB.

3.2 Index table

We also introduce an Index Table to access a TLB entry in
a similar manner to CAM based TLB. On CAM based TLB,
any tuple, which is pair of virtual address and physical ad-
dress, can be stored in any place. So to replace an entry, in-
dex which is sequential address in CAM is used. However, on
RAM based TLB, the place to store a tuple is calculated by
the equation (1).

(virtual address)mod(# of TLB entries) (1)

So the index of CAM based TLB and that of RAM based TLB
have different meaning.

To solve this problem, we use an Index Table to hold rela-
tion to the index used in CAM based TLB and the index used
in RAM based TLB. In this paper, we call the RAM address
which is hash value of VPN and has value from 0 to (M-1) as
RAM index, and pseudo-CAM address which has no physical
meaning but required for binary compatibility and has value
from 0 to 63 as CAM index.

4. Dynamic Code Analyzer
The proposed approach described in Section 3 can achieve
almost same performance to CAM based TLB with smaller
circuit scale. However, because of limitation of MIPS32 ISA,
the proposed approach can not outperform the original CAM
based TLB. As mentioned above, original MIPS32 ISA limits
the TLB entries.

PFN offset

compare

VPN offset

VPN0 PFN0

RAM RAM

hash function

VPN1 PFN1

EntryHi

EntryLo

TLBHit

0/1

IndexTable

64

Index/Random

RAM Index

M M

Way 0 Way 1

Figure 1. Basic idea of 2-way RAM base TLB.

…

M M

…

N Way Buffer

VPN offset

PFN offset

hash function

RAM

VPN0 VPN1 PFN0 PFN1

RAM

IndexTable

64

compare

0 ~ N

Index/Random

RAM Index

EntryHi

EntryLo

TLBHit

0/1

output
EntryHi EntryLo

Order Analyzer

Figure 2. Dynamic code analyzer.

To break the limitation, we introduce dynamic code an-
alyzer to increase the number of TLB entries with keeping
binary compatibility. Figure 2 shows block diagram of the
pseudo CAM type TLB using 2-way RAMs with proposed
dynamic code analyzer. We increase the number of Index Ta-
ble, and add dynamic code analyzer (labeled Order Analyzer
in the Figure2).

Generally, MIPS32 programs replace a TLB entry by fol-
lowing two manners; one is using a set of TLBP and TLBWI
instructions, and the other is using a TLBWR instruction. In
the former case, before replacing a TLB entry, TLB probe
instruction (TLBP) is executed to find the replace target en-
try. Succeeding to the TLBP instruction, TLB write index
(TLBWI) is execute to replace the TLB entry. In the latter
case, instead of specifying the position to replace, write ran-
dom TLB entry (TLBWR) instruction, which writes to a ran-
dom TLB entry, is used.

4.1 TLBP and TLBWI instructions

In the original MIPS32 processor, TLBP instruction
probes TLB and the result of TLBP which is CAM index,
is stored in the privileged register named Index register. Suc-
ceeding TLBWI instruction uses the Index register as CAM
index of TLB entry to replace. However, our approach does
not use a CAM, so we need to generate pseudo-CAM in-
dex. The Index Table described above holds relation between
CAM index and RAM index. However, to find CAM index,
we need to retrieve whole TLB entries. To find it quickly, we
also introduce CAM Index Table which holds mapping from
RAM index to CAM index.

142

…

M M

…

N Way Buffer

VPN offset

PFN offset

hash function

RAM

VPN0 VPN1 PFN0 PFN1

RAM

IndexTable

64

compare

0 ~ N

Index/Random

RAM Index

EntryHi

EntryLo

CAM Index Table

1

2

3

4

Figure 3. TLB probe instruction.

…

M M

…

N way buffer

VPN offset

PFN offset

hash function

RAM

VPN0 VPN1 PFN0 PFN1

RAM

IndexTable

64

compare

0 ~ N

Index/Random

RAM Index

EntryHi

EntryLo

TLBHit

0/1

1

2

3

2

Figure 4. TLB write index instruction.

In addition, our approach holds the way to the Way Buffer
register shown in the Figure 2, and uses it when replacing a
TLB entry.

Figure 3 shows the behavior of TLBP instruction. As first,
(1)hash value of virtual page number (VPN) which is stored
in the EntryHi register is calculated. Then, (2)VPN-RAM
is read using the hash value as a RAM index, and compare
VPN and both VPN0 (Way 0) and VPN1 (Way 1). If VPN0
or VPN1 matches to VPN, TLB hits and (3)translates RAM
index to CAM index using CAM Index Table. In addition,
(4)TLBP stores the bank number in which the TLB entry
found to Way Buffer.

Succeeding TLBWI replaces the TLB entry. As first,
(1)hash value is calculated using VPN in the EntryHi regis-
ter to calculate RAM index. Next, (2)to select the way to
replace LRU is used and replace a TLB entry. At the same
time, (3)both of RAM Index Table and CAM Index Table are
updated.

4.2 TLBWR instruction

TLBWR is similar to TLBWI instruction. Instead of Index
register, TLBWR uses Random register as CAM index. Other
mechanism is same to the TLBWI.

4.3 TLB flush

Firmware or OS sometimes flush whole TLB. Generally,
these system software invalidates all 64 TLB entries using
TLBWI. However, our approach has more than 64 TLB en-
tries, so these code does not work correctly. In order to solve
the problem, we also add two special registers, named LastIn-
dex and UpdateNum, to detect TLB flush. When TLBWI is

 0

 20

 40

 60

 80

 100

Gzip Vpr Gcc Mcf2 Crafty Gap Bzip2 Ammp Equake

H
it
 R

a
ti
o
(%

)

Original Proposed

Figure 5. Hit ratio of TLB.

executed, the value of Index register is compared to LastIn-
dex+1. If the values match, UpdateNum is incremented. Oth-
erwise, UpdateNum is cleared. If UpdateNum becomes 64,
it means system software try to flush whole TLB entries, so
whole TLB entries is cleared.

In this way, our approach detects TLB flush code, and be-
haves suitably.

5. Evaluation
To evaluate the performance of the proposed approach, we de-
velop a trace driven software simulator. We use nine bench-
mark programs from SPEC2000 benchmark suits. Figure 5
shows the evaluation results. The proposed TLB can achieve
better hit rate than the original MIPS32 TLB.

We also design the TLB using SystemVerilog, and evaluate
circuit scale, and confirm that the circuit scale of our proposed
TLB is enough small.

6. Conclusion
We propose a compact and high performance TLB implemen-
tation method. In original MIPS32 processor, TLB is imple-
mented using CAM which require large circuit scale. Our
proposed method can implement TLB using standard cell li-
brary and general RAM macros. Furthermore, our approach
can achieve 20% at the maximum and 6% in average bet-
ter performance than the original MIPS32 processor without
breaking binary compatibility.

As our future works, we will implement VLSI chip and
evaluate performance and power consumption.

Acknowledgment
This work is supported by the VLSI Design and Education
Center (VDEC) of the University of Tokyo in collaboration
with Synopsys Inc., Cadence Design Systems Inc., Rohm
Corporation., and Toppan Printing Corporation. This work is
also supported by JSPS KAKENHI Grant Number 24700047
and 15K00074.

References

[1] N. K. Choudhary, et. al: “FabScalar: Composing Syn-
thesizable RTL Designs of Arbitrary Cores within a

143

Canonical Superscalar Template”, Proc. of the ISCA-38,
pp. 11–22, June 2011.

[2] Hoang Le, Weirong Jiang, V.K. Prasanna, “Scal-
able high-throughput SRAM-based architecture for IP-
lookup using FPGA”, Proc. of the International Confer-
ence on Field Programmable Logic and Applications,
pp.137–142, 2008.

[3] Jean-Louis Brelet: Using Block RAM for High Per-
formance Read/Write CAMs, Xilinx application note,
XAPP204, 2000.

[4] Kyle Locke: Parameterizable Content-Addressable
Memory, Xilinx application note, XAPP1151, 2011.

[5] A.M.S. Abdelhadi, G.G.F. Lemieux: “Deep and nar-
row binary content-addressable memories using FPGA-
based BRAMs”, Proc. of the International Conference
on Field-Programmable Technology, pp.318–321, 2014.

[6] Brandon H. Dwiel, Niket K. Choudhary and Eric Roten-
berg: FPGA Modeling of Diverse Superscalar Proces-
sors, Proceedings of the 2012 IEEE International Sym-
posium on Performance Analysis of Systems & Soft-
ware, pp.188–199, 2012.

[7] S. Lekshmipriya, Suby Varghese: “FPGA Based Ar-
chitecture for High Performance SRAM Based TCAM
for Search Operations”, International Journal of Science
and Research, Vol.4, No.2, pp.1862–1867, 2013.

[8] Prajitha P. B.: “SRAM-Based TCAM Architecture for
ATM”, International Journal for Science and Advance
Research In Technology, Vol.1, No.4, pp.64–67, 2015.

[9] Altera: “Implementing High-Speed Search Applications
with Altera CAM”, Altera Application Note 119, 2001.

[10] Xilinx: “Content-Addressable Memory”, Product Spec-
ification DS253, 2008.

[11] Altera: “APEX 20KC Programable Logic Device
Datasheet”, Altera, 2001.

[12] Gun MUTO, Takahiro SASAKI, Yuki FUKAZAWA
and Toshio KONDO: “Implementation method of CAM
based TLB for standard cell base design,” IEICE techni-
cal report, Vol.115, No.174, pp.1–6, 2015 (Japanese).

[13] Gun MUTO, Takahiro SASAKI, Yuki FUKAZAWA
and Toshio KONDO: “Improvement of TLB perfor-
mance of MIPS-based processor,” IEICE technical re-
port, Vol.115, No.374, pp.13-18, 2015 (Japanese).

144

