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Abstract: We study the control of partially observed non-
terminating quantitative DESs under the fixed-initial-credit
energy objective. We model the control using a two-player
game played between the supervisor and the DES on a
weighted automaton. The DES aims to execute the events
so that its energy level goes below zero, while the supervi-
sor aims to maintain the energy level above zero. We show
that the proposed problem is reducible to finding a winning
strategy in a turn-based reachability game.
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1. Introduction
The supervisory control of qualitative discrete event systems
(DESs) was introduced by Ramadge and Wonham in [1],
where a DES is modeled by an automaton whose events are
partitioned into controllable and uncontrollable ones. Based
on the observed generated sequence, the supervisor controls
the DES by disabling or enabling any of the controllable
events at the current state of the system. The control objective
is to synthesize a supervisor that controls the DES to generate
a specified ∗−language.

In real situations, the supervisor may not be able to observe
some events in the generated sequences. Therefore, the con-
trol under partial observation were introduced in [2], where
the set of events of the DES is partition into the set of ob-
servable and unobservable ones. Takai et al. [3] introduced
a framework of supervisory control under partial event and
state observation by mapping each event and state to the cor-
responding masked event and masked state that are observed
by a supervisor.

Supervisory control for ω−language specification was
studied in [4], [5]. The ω−language is suitable for model-
ing the sequential behaviors of non-terminating systems. Op-
timal control of quantitative non-terminating DESs modeled
by weighted automata was considered in [6]. The control cost
is evaluated by the sum of the weights assigned to transitions
along the generated infinite trajectory. However, partially ob-
served non-terminating DESs were not considered.

Controller design problems can be formulated as two-
player games played between the controller and the system.
In [7], a control problem for partially observed DESs was
transformed into the problem of satisfying a µ-calculus for-
mula. The control problem under budget constraints were
studied under a two-player game setting in [8]. In [9], the
minimum attention controller synthesis for omega-regular ob-
jectives was consider using a two-player game automaton.

In this paper, we study the control of partially observed
non-terminating quantitative DESs under the energy objective

where the initial credit energy is given [10]. We model the
control of the DES using a two-player game played between
the supervisor and the DES on a weighted automaton. The
DES aims to execute the events so that its energy level goes
below zero after a finite number of events occur. On the other
hand, the supervisor aims to maintain the energy level above
zero. The fixed-initial-credit energy problem is to compute a
supervisor under which the supervised DES contains no dead-
lock and the energy level of the DES never goes below zero.
We show that the proposed problem is reducible to finding a
winning strategy in a turn-based reachability game [10], [11].

The rest of the paper is organized as follows. Section 2 in-
troduces quantitative DESs and provides the basic notations.
Section 3 introduces supervisory control under partial obser-
vation based on two-player game setting. Section 4 formu-
lates the control problem and provides algorithms. Finally,
Section 5 presents the conclusions.

2. Quantitative Discrete Event Systems
In this paper, N denotes the set of natural numbers including
zero, and Z denotes the set of integers.

We consider a quantitative DES modeled by a weighted
automaton G =< X,Σ, δ, xG0, w >, where X is a finite set
of states, Σ is a finite set of events, δ ⊆ X×Σ×X is a set of
transition relations, xG0 ∈ X is the initial state, and w : δ →
Z is a function that assigns a weight to each transition. The
event set Σ is partitioned into two disjoint sets: uncontrollable
events set Σu and controllable events set Σc. Likewise, δ is
partitioned into δc = δ ∩ (X ×Σc ×X) and δu = δ \ δc. For
each x ∈ X , let Σ(x) = {σ ∈ Σ|∃x′ ∈ X, (x, σ, x′) ∈ δ}. A
state x ∈ X such that Σ(x) = ∅ is called a dead state.

A run (resp. history) generated by the DESG is an infinite
(resp. a finite) sequence r = x0σ1x1 . . . ∈ X(ΣX)ω (resp.
h = x0σ1x1 . . . xn ∈ X(ΣX)∗) such that (xi, σi+1, xi+1) ∈
δ for each i ∈ N (resp. i ∈ {0, 1, . . . , n}). For a history
h = x0σ1x1 . . . xn, last(h) denotes the last state xn. For a
set of histories H , last(H) =

⋃
h∈H{last(h)}. The history

h is also called a cycle if x0 = xn. For each i ∈ N, we
denote the prefix x0σ1x1 . . . xi ∈ X(ΣX)∗ of the run r by
r[i]. Likewise, for a history h = x0σ1x1 . . . xn and an integer
i ∈ {0, 1, . . . , n}, h[i] denotes the prefix x0σ1x1 . . . xi. For
each state x ∈ X , Run(G, x) and His(G, x) are the sets of
all runs and histories generated by the DES G starting from
x, respectively. A run, or a history, is initialized if it starts
from the initial state xG0. Let Run(G) = Run(G, xG0) and
His(G) = His(G, xG0) be the sets of all runs and histories
generated byG starting from the initial state, respectively. For
a history h = x0σ1x1 . . . xn ∈

⋃
x∈X His(G, x), the energy

level EL(h) =
∑n−1
i=0 w(xi, σi+1, xi+1).
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Figure 1. A partially observed DES, where x0 is the ini-
tial state, Σu = {a1, a2}, Σc = {b1}, MY (x0) =
MY (x3) = y0, MY (x1) = MY (x2) = y1, MY (x4) =
MY (x5) = y2, MΛ(a1) = MΛ(a2) = a, and MΛ(b1) =
b. The label of each transition represents the correspond-
ing event and weight.

3. The Control under Partial Observation
Let Y and Λ be the set of masked states and masked events,
respectively [3]. A surjective function MY : X → Y (resp.
MΛ : Σ → Λ) maps each state (resp. event) to its masked
state (resp. masked event). A supervisor cannot observe
the states of the DES and the generated events, but can ob-
serve their masked states and masked events. We assume that
MY (xG0) = yG0 and M−1

Y (yG0) = {xG0}. An observation
function MO :

⋃
x∈X His(G, x) → Y (ΛY )∗ is defined as

follows: for each h = x0σ1x1 . . . σnxn ∈
⋃
x∈X His(G, x),

MO(h) =

{
yG0, if h = xG0,

MO(h[n− 1])MΛ(σn)MY (xn) otherwise.
Let MO(H) = {MO(h)|h ∈ H} for each H ⊆ His(G).

A supervisor observes generated masked sequences of the
histories and control the DES by disabling any of the con-
trollable events at the current state of the system. An event
set γ ⊆ Σ such that Σu ⊆ γ is called a control pattern,
which represents control-enabled events by the supervisor.
Let Γ = {γ ∈ 2Σ|Σu ⊆ γ} be the set of all control patterns.
If the DES generates a history h, the supervisor observes the
sequence MO(h) and assigns a control pattern γ ∈ Γ. Then,
only events included in γ are enabled at the state last(h).

We consider the control process as a two-player game
played between the supervisor and the DES, where a strat-
egy of the supervisor (resp. the DES) is a function πS :
MO(His(G)) → Γ (resp. πD : His(G) × Γ → δ). We im-
pose the following condition on πD: ∀h ∈ His(G), ∀γ ∈ Γ
such that Σ(last(h)) ∩ γ 6= ∅, if πD(h, γ) = (x, σ, x′), then
x = last(h) and σ ∈ γ. Let ΠS and ΠD be the sets of strate-
gies of the supervisor and the DES, respectively. For each
generated history h, the supervisor first selects the control pat-
tern γ = πS(MO(h)), then the DES executes the transitions
(x, σ, x′) = πD(h, γ). This process is repeated so that the
following run or history, which is denoted by seq(G, πs, πd),
is generated:
1) A run r = x0σ1x1 . . . such that ∀i ∈ N, σi+1 ∈
πS(MO(r[i])) and (xi, σi+1, xi+1) ∈ πD(r[i], πS(MO(r[i])).
2) A history h = x0σ1x1 . . . xn such that Σ(xn) ∩
πS(MO(h)) = ∅, and ∀i ∈ {0, 1, . . . , n − 1}, σi+1 ∈
πS(MO(h[i])) and (xi, σi+1, xi+1) ∈ πD(h[i], πS(MO(h[i])).

The history in case 2) is called a deadlock, since the DES is
forced to terminate at the dead state xn. For each πS ∈ Πs, let
Run(G, πS) = {seq(G, πS , πD) ∈ Run(G)|πD ∈ ΠD} and
Dead(G, πS) = {seq(G, πS , πD) ∈ His(G)|πD ∈ ΠD}.

4. Fixed-initial-credit Energy Problem
In this paper, we consider the following control problem.

Definition 1: For a given credit c0 ∈ N, the fixed-initial-
credit energy problem is to find a strategy πs ∈ ΠS such that
1) Run(G, πS) 6= ∅ and Dead(G, πS) = ∅, and 2) for each
h ∈ His(G, πS), c0 + EL(h) ≥ 0.

We show that this problem is reducible to computing a
winning strategy in a turn-based reachability game [11].

An observation function is a function o : X → Z ∪ {⊥},
which indicates the set of possible current states of the DES
and their energy levels. For each state x ∈ X , if o(x) ∈
Z, then x is a possible current state and its energy is o(x),
otherwise x is not the current state. Denoted by supp(o) =
{x ∈ X|o(x) 6= ⊥} is the set of all possible current states
indicated by the function o. The function o is said to be non-
negative if o(x) ≥ 0 for each x ∈ supp(o). Let O be the set
of all observation functions of the DESG. Let� be a relation
on O such that for each o1, o2 ∈ O, o1 � o2 if 1) supp(o1) =
supp(o2) and 2) o1(x) ≤ o2(x) for each x ∈ supp(o1).

For a control pattern γ ∈ Γ, a masked event λ ∈ Λ, and a
masked state y ∈ Y , o2 is the (γ, λ, y)-successor of o1 if
1. supp(o2) = {x2 ∈ X|∃(x1, σ, x2) ∈ δ, x1 ∈
supp(o1), σ ∈ γ ∩M−1

Λ (λ),MY (x2) = y},
2. for each x2 ∈ supp(o2), o2(x2) = min{o1(x1) +
w(x1, σ, x2)|(x1, σ, x2) ∈ δ, x1 ∈ supp(o1), σ ∈ γ ∩
M−1

Λ (λ)}, and
3. for each x1 ∈ supp(o1), there exists (x1, σ, x2) ∈ δ such
that x2 ∈ supp(o2) and σ ∈ γ ∩M−1

Λ (λ).
Namely, the set of possible current states changes from
supp(o1) to supp(o2) if the supervisor selects the control pat-
tern γ, and observes the masked state y and the masked event
λ. The condition 3 guarantees that the selected control pat-
tern γ enables at least one event at each state in supp(o1).
Moreover, the observation o2 indicates the worst-case energy
level of each state in supp(o2). For any observation o ∈ O,
succ(o, γ, λ, y) denotes the (γ, λ, y)-successor of o.

Then, we construct a game automatonH =< QH = QS∪
QD,ΣH = Γ∪ (Λ×Y ), δH = δS ∪δD, oH0 >, whereQS ⊆
O((Λ × Y )O)∗ (resp. QD ⊆ O((Λ × Y )O)∗Γ) is the set of
states of the supervisor (resp. the DES). δS ⊆ QS × Γ×QD
(resp. δD ⊆ QD × (Λ × Y ) × QS) is the set of out-going
transitions from the supervisor’s (resp. the DES’s) states, and
oH0 ∈ QS is the initial state. The construction of H is shown
in Algorithm 1. This algorithm is modified from the algorithm
for solving the fixed initial credit problem proposed in [10].

Figure 2 shows the game automaton constructed from
the DES in Figure 1 using Algorithm 1 where the initial
credit c0 = 0. The dead states in this automaton are
h2, h4, h5, and h6. Notice that h2 = o0(b, y0)o2, and
supp(o2) contains the dead state x3. Moreover, h4 =
o0(a, y1)o1(b, y2)o4, and the function o4 is not non-negative
because o4(x4) = −1. Algorithm 1 also returns the state
set Q+ ⊆ QH and the function PRE : Q+ → N. The
set Q+ = {q = o0(λ1, y1)o1 . . . (λn, yn)on ∈ QS |on
is non-negative, ΣH(q) = ∅, and there exists an integer
m ∈ {0, 1, . . . , n − 1} such that om � on}. For each
q = o0(λ1, y1)o1 . . . (λn, yn)on ∈ Q+, PRE(q) is the index
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Algorithm 1 H(G)

Require: G =< X,Σ, δ, xG0, w >
1: Q+ ← ∅

2: oH0(x)←
{
c0 if x = xG0,
⊥ otherwise, , and add oH0 in QS

3: for all qs = o0(λ1, y1)o1 . . . (λn, yn)on ∈ QS do
4: if on is non-negative and PRE(qs)= −1 then
5: for all (γ, λ, y) ∈ Γ × Λ × Y such that exists

o = succ(on, γ,MΛ(σ),MY (x′)) do
6: add qsγ in QD and (qs, γ, qsγ) in δS
7: if q′s = qs(λ, y)o /∈ Qs then
8: add q′s in Qs
9: end if
10: add (qsγ, (λ, y), q′s) in δD
11: end for
12: else if on is non-negative then
13: add qs ∈ Q+

14: end if
15: end for
16: returnH =< QH = QS∪QD,ΣH = Γ∪(Λ×Y ), δH =

δS ∪ δD, oH0 >,Q
+

17: function PRE(o0(λ1, y1)o1 . . . (λn, yn)on)
18: if ∃m ∈ {0, 1, . . . , n− 1}, om � on then
19: return m
20: else
21: return −1
22: end if
23: end function

m < n such that om � on. For the example in Figure 2,
Q+ = {h5, h6}.

Theorem 2: The state set Q is finite.
Proof: For every infinite sequences o0o1 . . . ∈ Oω such

that ok is non-negative and supp(ok) = supp(ok+1) for each
k ∈ N, there exist i, j ∈ {0, 1, . . . , n} such that i < j and
oi � oj by Dickson’s lemma. Since the state set X is finite,
{supp(o)|o ∈ O} = 2X is also finite. Therefore, for every
o0o1 . . . ∈ Oω such that ok is non-negative, there exist i, j ∈
{0, 1, . . . , n} such that i < j and oi � oj .

Then, we prove this theorem using a contradiction.
Suppose that Q is infinite. Since X and Σ are fi-
nite, the number of outgoing transitions at each state
in Q is also finite. By König’s lemma, there exists
qS0 γ1q

D
1 (λ1, y1)qS1 . . . ∈ Run(H). From the construction of

H , there exist o0(λ1, y1)o1 . . . ∈ O((Λ × Y )O)ω such that
o0(λ1, y1)o1 . . . (λk, yk)ok ∈ QS for each k ∈ N, all obser-
vations o0, o1, . . . are non-negative, and there is no i, j ∈ N
such that i < j and oi � oj . However, this is a contradiction
to Dickson’s lemma in the above discussion.

From Theorem 2, the construction ofH always terminates.
Then, from the construction of H , it can be easily shown that⋃
q∈QHis(H, q) does not contain any cycle. Moreover, each

dead state q of H (i.e., each q ∈ Q such that ΣH(q) = ∅) is
included in Qs.

Then, we consider a turn-based reachability game played
on H between the supervisor and the DES. A strategy of the

h0γ1 (a,y1) // h1 γ1 //

γ2 ��

h1γ1

(a,y2) ��

h5

h0

γ1

77

γ2 // h0γ2

(a,y1)

66

(b,y0)��

h1γ2 (a,y2) //

(b,y2)��

h3 γ2 // h3γ2

(b,y0)
OO

(b,y2)��
h2 h4 h6

Figure 2. The game automaton constructed from the DES in
Figure 1 using Algorithm 1. The control patterns are
γ1 = {a1, a2} and γ2 = {a1, a2, b1}. Observations o0,
o1, o2, o3, and o4 are defined as follows. supp(o0) =
{x0}, o0(x0) = c0 = 0. supp(o1) = {x1, x2},
o1(x1) = 0, o1(x2) = 1. supp(o2) = {x3}, o2(x3) = 5.
supp(o3) = {x5}, o3(x5) = 1. supp(o4) = {x4},
o4(x4) = −1. Then, we have h0 = o0, h1 =
h0(a, y1)o1, h2 = h0(b, y0)o2, h3 = h1(a, y2)o3, h4 =
h1(b, y2)o4, h5 = h3(b, y0)o0, h6 = h3(b, y2)o3.

supervisor (resp. the DES) is a function φS : QS → δS
(resp. φD : QD → δD). We restrict that for each qd ∈ QD,
φD(qd) is an out-going transition from qd. Let Φs and ΦD
be the set of strategies of the supervisor and the DES for
the game H , respectively. Both players play the game by
alternately selecting an out-going transition from the cur-
rent state of the game in their turns. Recall that we have
Q+ = {q = o0(λ1, y1)o1 . . . (λn, yn)on ∈ QS |on is non-
negative, ΣH(q) = ∅, and ∃m ∈ {0, 1, . . . , n − 1} such
that om � on.}. The objective of the supervisor is to reach
any state in Q+, while the objective of the DES is to prevent
the game from entering Q+. Since

⋃
q∈QHis(H, q) does

not contain any cycle, this game always terminate at a dead
state. Let seq(H,φs, φd) ∈ His(H) be the history gener-
ated under strategies φs and φd, and Dead(H,φs) = {h =
seq(H,φs, φd)|φd ∈ Φd,ΣH(last(h)) = ∅.}.

Definition 3: TheQ+-reachability problem is to find φs ∈
Φs such that last(Dead(H,φs)) ⊆ Q+.

Let H ′ =< QH \ Q+,ΣH , δ
′
H , oH0 > be the automaton

modified from H as follows: for each (qd, (λ, y), qs) ∈ δH ,
(qd, (λ, y), PRE(qs)) ∈ δ′H if qs ∈ Q+, and (qd, (λ, y), qs) ∈
δ′H otherwise. Then, from a given strategy φs ∈ Φs for the
game H , we define a strategy πφs ∈ ΠS for the game G as
follows. For each h = y0λ1y1 . . . λnyn ∈M0(His(G)),
1) if there exists a history hH = qS0 γ1q

D
1 (λ1, y1)qS1 . . . γnq

D
n

(λn, yn)qSn ∈ His(H ′) such that γi = φs(q
S
i ) for each

i ∈ {0, 1, . . . , n − 1}, then πφs
(h) = φs(q

s
n); 2) otherwise,

πφs(h) = Σ. The modified automaton of the game automaton
in Figure 2 is illustrated in Figure 3

Theorem 4: There exists πs ∈ ΠS that satisfies the fixed-
initial-credit energy problem if and only if there exists φs ∈
Φs that satisfies the Q+-reachability problem. Moreover, for
a given strategy φs ∈ Φs that satisfies the Q+-reachability
problem, the strategy πφs

∈ ΠS satisfies the fixed-initial-
credit energy problem.

Proof: (→) Let πs ∈ Πs be a strategy of the supervi-
sor for the game G that satisfies the fixed-initial-credit energy
problem. Let φs ∈ Φs be a strategy of the supervisor for the
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Figure 3. The automaton modified from one in Figure 2.

game H defined as follows.
1. φs(qH0) = πs(yG0).
2. For each q = o0(λ1, y1)o1 . . . (λn, yn)on ∈ QS ,

φs(q) = πs(yG0λ1y1 . . . λnyn).

From the construction ofH , φs is well defined. Then, we will
show that last(Dead(H,φs)) ⊆ Q+ using a contradiction.
Obviously, Dead(H,φs) ⊆ Qs. Suppose that there exists
hH = o0(λ1, y1)o1 . . . (λn, yn)on ∈ Dead(H,φs) such that
last(hH) /∈ Q+. Then, at least one of the following cases
holds.
1. last(hH) is not non-negative.
2. There does not exist a transition (γ, λ, y, o) ∈ Γ×Λ×Y ×
×O such that o is the (γ, λ, y)−successor of on.
For case 1, from the construction of H , there exists
hG = x0σ1x1 . . . xn ∈ His(G, πs) such that MO(hG) =
yG0λ1y1 . . . λnyn, and c0 + EL(hG) < 0. For case 2, from
the construction of H , there exists hG = x0σ1x1 . . . xn ∈
His(G, πs) such that MO(hG) = yG0λ1y1 . . . λnyn and
Σ(xn) = ∅. Therefore, Dead(G, πs) 6= ∅. Both cases are
contradictions to Definition 1.

(←) Let φs ∈ Φs be a strategy of the supervisor for
the game H that satisfies the Q+-reachability problem. We
show that the strategy πφs ∈ Πs satisfies the fixed-initial-
credit energy problem using a contradiction. Suppose that
πφs

does not satisfy the problem. By Definition 1, we have
Dead(G, πφs

) 6= ∅ or ∃h ∈ His(G, πφs
), c0 + EL(h) < 0.

First, consider the case where Dead(G, πφs
) 6= ∅.

Let hG = x0σ1x1 . . . σnxn ∈ Dead(G, πφs). From
the construction of H and H ′, there exists hH =
qS0 γ1q

D
1 (λ1, y1)qS1 . . . γnq

D
n (λn, yn)qSn ∈ His(H ′, φs) such

that ΣH(qSn ) = ∅ and MO(hG) = yG0λ1y1 . . . λnyn. How-
ever, since qsn ∈ Q′H and ΣH(qSn ) = ∅, we have qsn /∈ Q+.
Thus, hH ∈ His(H,φs) is the history that visits a dead state
which is not in Q+. This is a contradiction to Definition 3.

Next, consider the case where there exists hG =
x0σ1x1 . . . σnxn ∈ His(G, πφs

), c0 + EL(h) < 0.
From the construction of H and H ′, there exists hH =
qS0 γ1q

D
1 (λ1, y1)qS1 . . . γnq

D
n (λn, yn)qSn ∈ His(H ′, φs) such

that o = last(qSn ) ∈ O is not non-negative and MO(hG) =
yG0λ1y1 . . . λnyn. From the construction of H ′, hH must
also be included in His(H,φs). Obviously, qSn /∈ Q+. This
is a contradiction to Definition 3.
From Theorem 4, the fixed-initial-credit energy problem can
be solved by algorithms for computing a wining positional
strategy of the first player turn-based reachability games [11].

5. Conclusions
We studied the supervisory control of partially observed non-
terminating quantitative DESs under the fixed-initial-credit
energy objective. Partial observation is modeled by mapping
each event and state of the DES to the corresponding masked
event and masked state that are observed by a supervisor. An
optimal control action is represented by a winning strategy
of a two-player game played between the supervisor and the
DES on a weighted automaton. The fixed-initial-credit en-
ergy problem is to synthesize a supervisor under which the
supervised DES does not contain a deadlock and the energy
level of the system never goes below zero. Then, the proposed
problem was reduced to computing a winning strategy in a
turn-based reachability game. It is future work to consider the
other supervisory control problems of non-terminating DESs
under partial observation.
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