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Abstract—Exact analytical expressions for the electro-
magnetic field due to an electric dipole source located
inside and along the axis of symmetry of an oblate
spheroid are derived. The spheroid is made of a penetrable,
linear, isotropic, homogeneous and lossless material whose
propagation constant is either equal (isorefractive cloak)
or of opposite sign (anti-isorefractive metamaterial cloak)
to the propagation constant of the medium surrounding
the spheroid. In particular, the influence of the spheroidal
material on the radiation pattern of the spheroid is
examined.

I. INTRODUCTION

The radiation from a dipole surrounded by an oblate
spheroidal metamaterial cloak structure enclosure is an-
alyzed. The dipole source is located on the axis of
symmetry and axially oriented in a oblate spheroidal
coordinate system, as shown in Fig. 1. The cloak is
composed of a linear, homogeneous, isotropic and loss-
less double-positive (DPS) material or double-negative
(DNG) metamaterial. The DPS material has positive
values of permittivity ε, permeability µ, and wavenum-
ber k while the DNG metamaterial is characterized by
negative values of permittivity ε, permeability µ and
wavenumber k. Electric and magnetic fields in each
region are obtained in terms of infinite series containing
oblate spheroidal functions, using the notation of Flam-
mer [1]. In order to find an exact analytical solution
of the problem, the mode matching technique requires
isorefractive or anti-isorefractive conditions, implying
that the absolute values of the wavenumbers in each
region are the same, but the intrinsic impedances are
different. The analysis is performed in the phasor domain
with a time-dependence factor exp (jωt) that is omitted
throughout this manuscript. This article provides the
analytical solution and numerical results on the effects

of cloaking on the directivity will be presented at the
conference.

Fig. 1. Problem geometry.

This analysis is motivated by some applications where
metamaterial cloaking structures have been investigated
to reduce the scattering from receiving antennas [2],
[3]. Additionally, from the point of view of transmitting
antennas, a DNG spheroidal cloak structure improves the
radiation power from a dipole, and resonant phenomenon
gives also frequency dependent behavior [4]. Related
geometrical structures have been investigated in [5], [6].

II. ELECTRIC DIPOLE SOURCE

The geometry of the problem is shown in Fig. 1 and is
best described in the oblate spheroidal coordinate system
(η, ξ, ϕ), which is related to the rectangular coordinate
system (x, y, z) through the relationships

x =
d

2

√
(ξ2 + 1)(1− η2) cosϕ (1)

y =
d

2

√
(ξ2 + 1)(1− η2) sinϕ (2)

z =
d

2
ξη (3)

ISAP2015 Copyright (C) 2015 IEICE135



where d is the focal distance, −1 ≤ η ≤ 1, 0 ≤ ξ, and
0 ≤ ϕ ≤ 2π. Additional details on the oblate spheroidal
system are provided, for example, in [1], [7], and an
expression for the inverse relationship between cartesian
and oblate spheroidal coordinates is given in [8].

A. Cloak made of isorefractive material

When regions 1 and 2 are isorefractive to each other,
the propagation constants β1 and β2 are such that β1 =
β2 = β. Consider an electric dipole located inside region
1 on the axis of symmetry at (ξ0, η0). Its incident electric
Hertz vector is given by [7]

Πi =
e−jβR

βR
ẑ, (4)

where R is the distance between the dipole and the
observation point. The magnetic field has only a ϕ̂
directed component given by

H i
1ϕ =

2β2Y1√
ξ20 + 1

∞∑
n=1

jn

ρ̃1,nÑ1,n

×R(1)
1,n(−jc, jξ<)R

(4)
1,n(−jc, jξ>)S1,n(−jc, η),

(5)

where c = βd/2, R(1)
1,n and R

(4)
1,n are radial oblate

spheroidal functions, and S1,n are oblate angular
spheroidal functions, according to the notation of Flam-
mer [1]. The electric and magnetic fields inside regions
1 and 2 are given by{

Eh = Ehξ(ξ, η)ξ̂ + Ehη(ξ, η)η̂

Hh = Hhϕ(ξ, η)ϕ̂
(6)

where h = 1, 2 depends on the region under consid-
eration. The electric field components may be obtained
from the magnetic field component Hhϕ using Maxwell’s
equations according to

Ehξ =
jZh
c

√
1− η2
ξ2 + η2

(
∂

∂η
− η

1− η2

)
Hhϕ (7)

Ehη = −jZh
c

√
ξ2 + 1

ξ2 + η2

(
∂

∂ξ
+

ξ

ξ2 + 1

)
Hhϕ (8)

Inside region 1, there is also a scattered field given by

Hs
1ϕ =

2β2Y1√
ξ20 + 1

∞∑
n=1

jn

ρ̃1,nÑ1,n

anR
(1)
1,n(−jc, jξ)S1,n(−jc, η)

(9)

One should notice that the most general electromagnetic
field inside region 1 requires the superposition of two
linearly independent radial functions, i.e those of the first
kind and those of the fourth kind. However, the functions
of the fourth kind cannot be included because we seek
a solution that is valid for all values of c, including
the limiting case c → 0. However, in such a case, the
functions R(4)

1,n approach the spherical Hankel functions,
which are singular at the origin. In the outer region 2,
the total field is written to satisfy the radiation condition
at infinity as

H2ϕ =

2β2Y2√
ξ20 + 1

∞∑
n=1

jn

ρ̃1,nÑ1,n

bnR
(4)
1,n(−jc, jξ)S1,n(−jc, η).

(10)

The tangential components of the electric field are

E1η = −jZ1

c

2β2Y1√
ξ20 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

jn

ρ̃1,nÑ1,n

×
[
anR

(1)′

1,n (−jc, jξ1) +R
(1)
1,n(−jc, jξ0)R(4)′

1,n (−jc, jξ1)

+
ξ1

ξ21 + 1

(
anR

(1)
1,n(−jc, jξ1)

+ R
(1)
1,n(−jc, jξ0)R(4)

1,n(−jc, jξ1)
)]
S1,n(−jc, η) (11)

E2η = −jZ2

c

2β2Y2√
ξ20 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

jn

ρ̃1,nÑ1,n

bn

×
[
R

(4)′

1,n (−jc, ξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(−jc, jξ1)

]
S1,n(−jc, η)

(12)

The unknown expansion coefficients are determined
by the application of the boundary conditions at the
interface ξ = ξ1 yielding

an =
∆a

∆
(13)

bn =
∆b

∆
(14)

where

∆ = −Y1R(1)
1,n(−jc, jξ1)

×
(
R

(4)′

1,n (−jc, jξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(−jc, jξ1)

)
+ Y2R

(4)
1,n(−jc, jξ1)
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×
(
R

(1)′

1,n (−jc, jξ1) +
ξ1

ξ21 + 1
R

(1)
1,n(−jc, jξ1)

)
(15)

∆a = Y1R
(1)
1,n(−jc, ξ0)R(4)

1,n(−jc, jξ1)

×
(
R

(4)′

1,n (−jc, ξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(−jc, ξ1)

)
− Y2R(4)

1,n(−jc, jξ1)R(1)
1,n(−jc, jξ0)

×
(
R

(4)′

1,n (−jc, jξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(−jc, jξ1)

)
(16)

∆b = −Y1R(1)
1,n(−jc, jξ1)R(1)

1,n(−jc, jξ0)

×
(
R

(4)′

1,n (−jc, jξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(−jc, jξ1)

)
+ Y1R

(1)
1,n(−jc, jξ0)R(4)

1,n(−jc, jξ1)

×
(
R

(1)′

1,n (−jc, jξ1) +
ξ1

ξ2 + 1
R

(1)
1,n(−jc, jξ1)

)
(17)

To obtain the asymptotic behavior of the magnetic
field, we observe that when ξ → ∞ then cξ → βr
and η → cos θ, where (r, θ, ϕ) is a spherical coordinate
system, yielding

H2ϕ ∼
e−jβr

βr
F (cos θ) (18)

where

F (cos θ) =
2jβ2Y2√
ξ20 + 1

∞∑
n=1

(−1)n

ρ̃1,nÑ1,n

bnS1,n(−jc, cos θ)

(19)

B. Cloak made of anti-isorefractive material

When regions 1 and 2 are anti-isorefractive to each
other, the propagation constants β1 and β2 are such that
−β1 = β2 = β. Similar to the previous case, the Hertz
vector of an electric dipole located inside region 1 on the
axis of symmetry at (ξ0, η0) is given by

Πi = −e
jβR

βR
ẑ (20)

where the sign of the propagation constant is changed
to account for the presence of the DNG material. The
magnetic field has only a ϕ̂ directed component given
by

H i
1ϕ =

2β2Y1√
ξ20 + 1

∞∑
n=1

jn

ρ̃1,nÑ1,n

×R(1)
1,n(jc, jξ<)R

(4)
1,n(jc, jξ>)S1,n(jc, η), (21)

where the oblate spheroidal functions depend upon the
parameter −c inside the DNG region. The electric and
magnetic fields inside regions 1 and 2 are still given by
eq. (6) and the relationships (7) and (8) are still valid.
The scattered field inside region 1 is written as

Hs
1ϕ =

2β2Y1√
ξ20 + 1

∞∑
n=1

jn

ρ̃1,nÑ1,n

cnR
(1)
1,n(jc, jξ)S1,n(jc, η)

(22)
and, in the outer region 2, the total field is written to
satisfy the radiation condition at infinity as

H2ϕ =

2β2Y2√
ξ20 + 1

∞∑
n=1

jn

ρ̃1,nÑ1,n

dnR
(4)
1,n(−jc, jξ)S1,n(−jc, η).

(23)

The tangential components of the electric field are given
by

E1η =
jZ1

c

2β2Y1√
ξ20 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

jn

ρ̃1,nÑ1,n

×
[
cnR

(1)′

1,n (jc, jξ1) +R
(1)
1,n(jc, jξ0)R

(4)′

1,n (jc, jξ1)

+
ξ1

ξ21 + 1

(
cnR

(1)
1,n(jc, jξ1)

+ R
(1)
1,n(jc, jξ0)R

(4)
1,n(jc, jξ1)

)]
S1,n(jc, η) (24)

E2η = −jZ2

c

2β2Y2√
ξ20 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

jn

ρ̃1,nÑ1,n

× dn
(
R

(4)′

1,n (−jc, jξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(−jc, jξ1)

)
× S1,n(−jc, η) (25)

The unknown expansion coefficients are determined
by the application of the boundary conditions at the
interface ξ = ξ1, yielding

cn =
∆c

∆2
(26)

dn =
∆d

∆2
(27)

where

∆2 = Y1R
(1)
1,n(jc, jξ1)

×
(
R

(4)′

1,n (−jc, jξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(−jc, jξ1)

)
+ Y2R

(4)
1,n(−jc, jξ1)

×
(
R

(1)′

1,n (jc, jξ1) +
ξ1

ξ21 + 1
R

(1)
1,n(jc, jξ1)

)
(28)
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∆c = −Y1R(1)
1,n(jc, jξ0)R

(4)
1,n(jc, jξ1)

×
(
R

(4)′

1,n (−jc, jξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(−jc, jξ1)

)
− Y2R(4)

1,n(−jc, jξ1)R(1)
1,n(jc, ξ0)

×
(
R

(4)′

1,n (jc, jξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(jc, jξ1)

)
(29)

∆d = −Y1R(1)
1,n(jc, ξ1)R

(1)
1,n(jc, jξ0)

×
(
R

(4)′

1,n (jc, jξ1) +
ξ1

ξ21 + 1
R

(4)
1,n(jc, jξ1)

)
+ Y1R

(1)
1,n(jc, jξ0)R

(4)
1,n(jc, jξ1)

×
(
R

(1)′

1,n (jc, jξ1) +
ξ1

ξ21 + 1
R

(1)
1,n(jc, jξ1)

)
(30)

Similar to the previous section, the asymptotic behavior
of the magnetic field is given by

H2ϕ ∼
e−jβr

βr
G(cos θ) (31)

where

G(cos θ) =
2jβ2Y2√
ξ20 + 1

∞∑
n=1

(−1)n

ρ̃1,nÑ1,n

dnS1,n(−jc, cos θ)

(32)
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