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Abstract: The surveillance problem over graphs is to find an
trajectory of an agent that travels each node as evenly as pos-
sible. This problem has several application such as city safety
management and disaster rescue. In this paper, the finite-time
optimal surveillance problem is formulated, and is reduced to
a mixed integer linear programming (MILP) problem. Based
on the policy of model predictive control, an optimal trajec-
tory is generated by solving the MILP problem at each dis-
crete time, and persistent surveillance can be realized.

1. Introduction

The surveillance problem over graphs is to find an trajectory
of agents that travels each node as evenly as possible [1], [4],
[5]. This problem has several application such as city safety
management and disaster rescue. Furthermore, in the case of
centralized control, a controller computes the next location of
agents, and sends to each agent through communication net-
works. In this sense, the surveillance problem can be regarded
as a synthesis problem of networked control systems.

On the other hand, to overcome the hardness of control of
complex systems, it is natural to approximately solve complex
problems using simplification/abstraction techniques (see,
e.g., [11]). In the surveillance problem, it is appropriate that a
surveillance area is given by a graph. The surveillance prob-
lem over graphs has been studied in e.g., [1]. However, to the
best of our knowledge, the method based on model predictive
control (MPC) has not been studied so far (see, e.g., [3], [10]
for details of MPC).

In this paper, we consider the surveillance problem over
graphs for a single agent. In order to express behavior of
agents in the surveillance problem, we adopt a mixed logi-
cal dynamical (MLD) system model [2]. The MLD (mixed
logical dynamical) system model is well known as a powerful
model of hybrid systems. In this paper, the optimal surveil-
lance problem over a given graph is formulated. This problem
is a kind of the finite-time optimal control problem. Behav-
ior of an agent is modeled by the MLD system model. Then,
the optimal surveillance problem is reduced to a mixed inte-
ger linear programming problem, which can be solved by a
suitable commercial/free solver. In order to generate the next
location, an on-line procedure based on model predictive con-
trol [3] is also presented.

Notation: Let R denote the set of real numbers. Let
{0, 1}n denote the set of n-dimensional vectors, which con-
sists of elements 0 and 1. Let 1n denote the n-dimensional
vector whose elements are all one. Let In and 0m×n denote
the n× n identity matrix and the m× n zero matrix, respec-
tively. For simplicity of notation, we sometimes use the sym-
bol 0 instead of 0m×n, and the symbol I instead of In. For

the vector v, let v� denote the transpose of v.

2. Problem Formulation

A surveillance area is given by an undirected connected graph
G = (V,E), where V = {v1, v2, . . . , vn} is the set of nodes,
and E ⊆ V ×V is the set of undirected edges. We assume that
an agent can move according to a given graph, and behavior of
an agent is expressed by a discrete-time system. The number
of agents is given by m.

As an example, consider the undirected connected graph
in Fig. 1. Suppose that the initial location of an agent is given
by v4. Then, the candidates of the location at the next time is
constrained to the set {v2, v4, v5, v6, v7}. Thus, a complicated
surveillance area can be modeled by an undirected graph.

For each vertex, we define a penalty xi(k) ∈ R, k ∈
{0, 1, 2, . . . } as follows:

xi(k + 1) =

{
0 if the agent is located on vi at time k,
xi(k) + 1 otherwise.

(1)
Then, the optimal surveillance problem is formulated as

follows.
Problem 1: For the undirected connected graph G =

(V,E) and time evolution (1) of the penalty, suppose that the
initial locations of an agent, the initial penalty xi(0), and the
prediction horizon N are given. Then, find trajectories of m
agents minimizing that following cost function

J =

N∑
k=0

n∑
i=1

qixi(k) (2)

where qi ≥ 0 is a given weight.
We may impose a constraint such as xi(k) ≤ α, where

α > 0 is a given scalar. Temporal logic constraints can also be
imposed for Problem 1 (see e.g., [6], [7], [9]). In this paper,
for simplicity of discussion, we consider the case where no
constraints are imposed.

As an example, consider the undirected connected graph
in Fig. 1 again. Suppose that the initial location of an agent
and the initial penalty xi(0) are given by v4 and xi(0) = 0,
respectively. Then, xi(1) can be obtained as x4(1) = 0
and xi(1) = 1, i = 1, 2, 3, 5, 6, . . . , 14. Next, suppose that
the the location at time 1 is given by v7. Then, xi(2) can
be obtained as x7(2) = 0, x4(2) = 1, and xi(2) = 2,
i = 1, 2, 3, 5, 6, 8, 9, . . . , 14. From this example, we see that
an trajectory of an agent that travels each node as evenly as
possible can be obtained by using the cost function (2).
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Figure 1. Example of undirected connected graphs.

Figure 2. Simple example of undirected connected graphs.

3. Modeling of an Agent and Penalties Using
the MLD System

In this section, we consider modeling behavior of an agent
and time evolution of penalties by using a mixed logical dy-
namical (MLD) system, which is one of the powerful model
of hybrid systems (see [2]).

First, we define a binary variable δi(k) as follows:

δi(k) =

{
1 if the agent is located on vi at time k,
0 otherwise.

From this definition, we impose the following equality con-
straint:

δ1(k) + δ2(k) + δ3(k) = 1, k ∈ {0, 1, 2 . . . }. (3)

Using a binary variable, consider modeling behavior of an
agent. We present a simple example.

Example 1: Consider the undirected graph shown in Fig.
2. This graph implies that

(i) If the agent is located on v1 at time k, the position of
the agent at time k + 1 is either v1 or v2,

(ii) If the agent is located on v2 at time k, the position of
the agent at time k + 1 is at least any one of v1, v2, and
v3,

(iii) If the agent is located on v3 at time k, the position of
the agent at time k + 1 is either v2 or v3.

Using a binary variable, these conditions can be expressed by
⎧⎨
⎩

δ1(k) ≤ δ1(k + 1) + δ2(k + 1),
δ2(k) ≤ δ1(k + 1) + δ2(k + 1) + δ3(k + 1),
δ3(k) ≤ δ2(k + 1) + δ3(k + 1).

(4)

For example, if δ1(k) = 1 (i.e., δ2(k) = δ3(k) = 0 holds
from the equality constraint (3)), then either δ1(k+1) = 1 or
δ2(k+1) = 1 must hold, and δ3(k+1) = 0 must hold. Thus,
three linear inequalities (4) and the equality constraint (3) can
express behavior of an agent moving along a given undirected
graph.

We consider a general case. Define

δ(k) = [ δ1(k) δ2(k) · · · δn(k) ]
�
.

Then, behavior of an agent can be modeled by

δ(k)− Φδ(k + 1) ≤ 0, (5)

where Φ is an adjacency matrix of a given graph. See [2], [8]
for further details.

Next, consider modeling time evolution of the penalty
xi(k). Using δi(k), time evolution of xi(k) can be expressed
by

xi(k + 1) = (1− δi(k))(xi(k) + 1). (6)

Defining
zi(k) := δi(k)xi(k)− 1, (7)

(6) can be rewritten as the following linear system:

xi(k + 1) = xi(k)− δi(k)− zi(k). (8)

Without loss of generality, xi(k) is constrained by xi(k) ∈
[0, xmax] ⊂ R, where xmax < ∞ can be determined from a
given undirected connected graph. Then, (7) can be equiva-
lently transformed into{−1 ≤ zi(k) ≤ xmaxδi(k)− 1,
xi(k)− xmax(1− δi(k))− 1 ≤ zi(k) ≤ xi(k)− 1,

(9)

See [2] for further details.
From (3), (5), (8), and (9), behavior of an agent and time

evolution of the penalty can be expressed by the following
MLD system:{

x(k + 1) = Ax(k) +B1u(k) +B2z(k),
Cx(k) +D1u(k) +D2z(k) ≤ E,

(10)

where

x(k) =
[
x1(k) x2(k) · · · xn(k) δ

�(k)
]�

∈ Rn × {0, 1}n,
u(k) = δ(k + 1) ∈ {0, 1}n,
z(k) = [ z1(k) z2(k) · · · zn(k) ]� ∈ Rn,

and

A =

[
In −In
0 0

]
, B1 =

[
0
In

]
, B2 =

[
In
0

]
,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 In
0 0
0 −xmaxIn
In xmaxIn
−In 0
0 1�n
0 −1�n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−In
In
−In
In
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1n
−1n

(xmax + 1)1n
−1n
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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4. Reduction of the Optimal Surveillance
Problem to an MILP problem

Using the MLD system (10), consider reducing Problem 1 to
an MILP (mixed integer linear programming) problem. Here-
after, for simplicity of notation, the MLD system (10) is de-
noted by {

x(k + 1) = Ax(k) +Bv(k),
Cx(k) +Dv(k) ≤ E,

(11)

where v(k) := [ u�(k) z�(k) ]�, B := [ B1 B2 ], and
D := [ D1 D2 ].

First, using

x(k) = Akx0 +

k∑
i=1

Ai−1Bu(k − i)

obtained from the state equation in (11), we can obtain

x = Ax(0) +Bv (12)

where

x := [ xT (0) xT (1) · · · xT (N) ]�,
v := [ vT (0) vT (1) · · · vT (N − 1) ]�,

and

A =

⎡
⎢⎢⎢⎢⎢⎣

I
A
A2

...
AN

⎤
⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
B 0 · · · 0

AB
. . .

. . .
...

...
. . .

. . . 0
AN−1B · · · AB B

⎤
⎥⎥⎥⎥⎥⎥⎦
.

From the linear inequality in (11), we obtain

Cx+Dv ≤ E (13)

where

C =

⎡
⎢⎣
C 0 0

. . .
...

0 C 0

⎤
⎥⎦ , D =

⎡
⎢⎣
D 0

. . .
0 D

⎤
⎥⎦ ,

E =

⎡
⎢⎣
E
...
E

⎤
⎥⎦ .

Next, defining Q = [ q1 · · · qn ][ In 0 ], the cost function (2)
can also be rewritten as

J = Qx (14)

where Q̄ = [ Q · · · Q ]. By substituting (12) into (13) and
(14), Problem 1 can be equivalently rewritten as the following
problem.

Problem 2: Suppose that the initial state x(0) is given.
Then, find v ∈ ({0, 1}nm+n × Rn)N minimizing the fol-
lowing linear cost function

J = QBv +QAx(0)

subject to the following linear constraint

(CB +D)v ≤ E − CAx(0).
This problem is the form of an MILP problem, which can

be solved by using a free/commercial solver.
Finally, we present a procedure of model predictive control

(MPC) using Problem 2.

Procedure of MPC-Based Optimal Surveillance:
Step 1: Set t = 0, and give xi(0) (the initial penalty for each
node) and δ(0) (the initial location for each agent).

Step 2: Solve Problem 2.

Step 3: Move an agent based on δi,j(1) obtained.

Step 4: Set t+ 1 → t, and return to Step 2.

5. Conclusion
In this paper, we propose an optimal surveillance method for
a given graph. Overall model including time evolution of the
penalty and behavior of an agent is given by a mixed logical
dynamical system, and the optimal surveillance problem is
reduced to a mixed integer linear programming (MILP) prob-
lem. According to the receding horizon policy, the MILP
problem is solved at each discrete time. Therefore, an ap-
propriate surveillance can be achieved. The proposed method
can be extended to the case of multiple agents.

This research was partly supported by Grant-in-Aid for
Scientific Research (C) 26420412.
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