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Abstract—Nowadays, intelligence is paving its ways into the
IoV domain. With the need of improvement in intelligence in this
area, the need of self-organizing network management systems
for providing V2X communication is also of vital importance,
which current systems lack. Current routing solutions for IoV are
complex and require intelligence embedded in the form of closed-
loop systems. To this, an intent-based system is designed, which
takes high level requirements for routing in IoV. The routing ap-
proach is road-aware and widens the scope of road-awareness to
vehicles from multiple edge domains. Another problem with the
current routing schemes in IoV is that their network management
systems are not self-organizing. A self-organizing management
system is of high importance and requires a closed-loop system.
To this, an intent-based approach is followed integrated with
a reinforcement learning model that supports the creation of a
routing policy, which is further applied to the orchestrator and
enables a road-aware and hierarchical routing approach. The
proposed system is shown to be efficient in terms of data rate
and the number of packet flows managed per unit time, in the
management of vehicular networks.

I. INTRODUCTION

In VANET, the vehicles are connected to each other by an
adhoc network. With the increase in number of vehicles day
by day, traffic congestion is also arising. An exemplar platform
to provide connectivity among the vehicles is shown in [1],
which comprises of a data collection module, controlling and
management module. As the IoV is an advancement to the
V2V communication, so it comes up with new challenges such
as routing for a variety of networks.

By keeping the introduction of different challenges in rout-
ing at the edge under consideration, the routing algorithm
makes the use of a kalman filter based model for predicting the
vehicle locations accurately. This accurate estimation of future
location helps the proposed routing algorithm to stabilize and
enhance the V2X network. The proposed system addresses
the problem of domain scope for routing, and increases the
scope of routing to be aware across the multiple road segments,
zones.

Different mechanisms to optimize the use of resources at the
edge nodes along with the user vehicles are being proposed
and implemented for the multi-hop routing. The efficient usage
of the spectrum can lead to a drastic improvement in the
5G networks. Architectures for D2D communication between
proximity service (ProSe) function and home subscriber server
(HSS) are also proposed [2]. Also, the usage of virtual on-
board unit (vOBU) makes the vehicular communication use
cases to perform close to real-time shown in this work.

II. LITERATURE REVIEW

Routing is also an important aspect of network management,
especially when wireless networks are considered. It is a
complex management task, which makes it more complicated
in the domain of wireless networks. A 2 tier-based routing
algorithm [3] is limited to wired networks only. In contrast, the
proposed work considers the wireless adhoc networks where
the mobility of vehicles is very dynamic in nature.

A use case related to predictive QoS [4] is described and
is reflected to the proposed system. The concept of predicting
new location of a vehicle is one such use case. Article [5],
provides the information on how the prediction of handover
time for a connected car can be derived and implemented
using a proactive road-aware approach. Following the idea
of prediction to support the proactive road-aware routing
algorithm [6] [7] based on kalman filter [8], a proactive and
stable routing IoV framework at the edge is proposed.

Two modules [8] used in the system to enable proactive
decision making to install the flow rules related to the vehicles.
The two modules are geographic information system (GIS)
and routing in software-defined internet of vehicle (SD-IoV).
And at last, the results are shown to evaluate the performance
of a test bed based on a software-defined networking (SDN)
controller, mininet for the emulation of vehicular network
hosts, and open virtual switch (OVS) switches acting as RSU,
switches and moving vehicles.

An overview of LTE-assisted D2D trial implementation
under the 3GPP standards [9] is explained. An architecture
is also proposed as a PoC to implement a ProSe function and
makes it accessible to the evolved packet core (EPC). The
interactions between the ProSe and EPC are also described in
detail.

III. SYSTEM DETAILS

This section provides the highlight of the proposed system.
The architecture is shown in fig. 1, which reflects several
standards related to MEC, V2V, and ProSes. A stable path
routing algorithm is embedded into the central Intent-based
networking (IBN) application, which enables the high-level
routing configurations in the form of routing policies. The
features of the proposed routing algorithm are its proactiveness
and road-awareness. It also follows the approach of closed-
loop systems, which enables the property of self-organizing
networks for IoV. Further, the proposed system is pictorially
shown in fig. 1 as follows:
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Fig. 1. System Architecture

A. IBN

IBN-based system shown in fig. 1, has the responsibility
to translate the user-defined intent containing a high-level
requirement. The inputs to the intent translation module are
received either from the intent defined by the network operator
to request a specific type of service (ToS) or from the moni-
tored information of vehicles that comes from the orchestrator.

Firstly, the intent translation module’s job is to translate the
high-level policy into a low level or system understandable
configurations. The user intent is converted into a policy which
is further passed onto the orchestrator, which is responsible to
orchestrate it onto the specific domain it was targeted for.

Secondly, the reinforcement learning (RL) [10] module
embedded into the intent translation module predicts the best
vehicle to be connected for data transfer. These predictions for
every vehicle in each edge and zone are given as an input to
the policy creation module which generates the route for each
vehicle in the path.

There are two possible inputs to the intent translation
module. The first possibility is that it gets the intent of a user in
the form of high-level requirement, which it must be converted
into a low-level configurable requirement. The second possibil-
ity is that it may receive the monitoring information of vehicles
and it passes it onto the reinforcement learning module which
predicts the next location of vehicle. The output of RL model
and the other monitored information are considered to create a
policy which is passed onto the lower-level orchestrator which
installs flow rules betweeb vehicles.

B. Reinforcement learning

The RL model takes the monitored information and some of
the inputs come from proximity services. The q-value shown

Fig. 2. Q-value synchronization

in fig. 2 represents the delay-value of a packet to arrive on
another vehicle.

Besides the q-value representing the delay of packet trans-
mission from one vehicle to another, other monitored infor-
mation such as position, velocity, and direction are taken
into consideration to decide the possible actions. All possible
actions shown in fig. 3 are applied to the RL model, which
gives the corresponding q-value, of which the best action is
selected and the associated predicted location of vehicles.
Markov decision process (MDP) is used in the proposed
system. Then routing determines the path based on the best
prediced location. The shape of road is also utilized in order
to select the best path for the V2X path. To define the policy,
IBN module plays its role and orchestrates as explained in
Section III-A

C. Proposed V2X scenarios

The proposed scenarios are explained here. The scenario
1 showcases a connectivity example in which both of the
vehicles are under the same cell. Second scenario, both are
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Fig. 3. Reinforcement learning model mechanism

TABLE I
DATA RATE AND PACKET FLOWS MANAGED.

Scenario number
Performance metrics

Data rate Packet flows managed
low medium high

Scenario 1 21

7 11 10

Scenario 2 19
Scenario 3 33
Scenario 4 42
Scenario 5 23
Scenario 6 21

under same cell but out of coverage. Third scenario, the vehi-
cles are in range but under different cell. Fourth scenario, the
vehicles are out of coverage and under different cell. Fifth and
sixth scenarios demonstrate the proactiveness of the proposed
routing algorithm, which is shown effective where the cells
are not involved even in case where source and destination
vehicles are under different cells. This is due to proactiveness
and road-awareness property of proposed system.

IV. EVALUATION AND RESULTS

The experiments were conducted on a development work-
station running Ubuntu 20.04.2 long term support (LTS) with
256 gigabytes (GBs) of random access memory (RAM) and
running on Intel Xeon gold 6230r shown in table 3. 3 virtual
machines (VMs) are created. The primary VM (master node)
manages the other two VMs (edge nodes). The master node
is assigned 16 processors with 30 GB RAM, with the help
of which it manages each edge node, and each edge node is
assigned 26 processors with 60 GB RAM.

Table I shows a comparison of data rates and number of
packet flows managed by proposed solution. The comparison
is made between the solutions based on no-prediction, predic-
tion based on vehicle trajectory [8], and proposed method.

The results for number of packet flows managed are shown
in fig. 4. The x-axis has different routing solutions applied
for all six scenario average values. The y-axis represents the
number of packet flows managed for each routing solution.
Each comparison can be seen in the graph where the blue
color is the data rate for the routing that is not based on
a prediction and the orange color is the data rate for the
routing based on prediction. Whereas the green color is the
data rate for the proposed proactive and stable path routing
approach using the reinforcement learning. A clear difference
can be depicted from the graphs shown in fig. 4 that the shown

number of packet flow managed for the proposed routing are
lesser than the reactive forwarding. Overall performance of the
proactive and stable routing algorithm integrated with the RL-
based model proves to be beneficial in terms of performance.

The results for number of data rates are shown in fig. 5. It
shows a comparison of data rates between different solutions
based on no-prediction, prediction [8], and the proposed rout-
ing solution integrated with the RL model. The x-axis shows
different routing solutions applied for all the scenarios. Y-axis
represents the data rates for each routing solution mapped on
x-axis. Each comparison can be seen in the graph where the
blue color is the data rate for the routing that is not based on a
prediction and the orange color is the data rate for the routing
based on prediction. Whereas the green color is the data rate
for the proposed proactive and stable path routing approach.
A clear difference can be depicted from the graphs shown in
data rate results. It depicts that the shown data rates for the
proposed routing are far better than the reactive forwarding.
It instead provides a direct V2V connection for the scenarios
shown in fig. 5(e) and (f), when the vehicles are predicted to
be closer and under the same cell. Overall, the performance
of the routing algorithm integrated with the RL model shows
better performance as compared to the previous approaches.

V. CONCLUSION

Efficiently managed vehicular networks provide a stable
connection. In addition, as the future use cases to be addressed
require a lot of bandwidth and are dependent on telecommu-
nication networks. The increase in number of vehicles and
the wide coverage of telecommunication networks drive the
need of improvement in hybrid v2x network connectivity.
To address this problem, a ton of data to be transferred on
daily basis, efficient management of spectrum and channels
in a hybrid approach using the proposed system can have
significant impact on the resource usage and operating ex-
penses (OPEX). The results provided in terms of data rates
and number of packet flows managed proves to be intelligent
in terms of provisioning of proactive and a stable connection.
This reduces the load of cellular spectrum and provides a wide
coverage of area using the proposed system with features of
intelligent awareness of the road vehicle states. With the high-
level required inputs in the form of intent leads to more open
options in the IoV domain. This closed-loop system will also
enable the zero touch systems, which also lead to the reduction
in management cost of vehicular networks.

The number of packet flows managed and data rate results
in the Section IV provide such a v2x network, which is reduces
the burden of cellular networks with the help of wireless
v2x connections based on direct short range communication
(DSRC). The results of routing overhead and packet delivery
ration both mapped against vehicle speed reflect the improve-
ment in vehicular networks using the proposed methodology.
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Fig. 4. Number of packet flows managed - A comparison

Fig. 5. Data rates - A comparison
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