
Toward Formal Analysis of Timed Anonymous Systems

Yoshinobu Kawabe1 and Nobuhiro Ito1

1Department of Information Science, Aichi Institute of Technology
Yachigusa 1247, Yakusa-cho, Toyota, Aichi 470-0392, Japan
E-mail : 1{ kawabe, n-ito }@kwb.aitech.ac.jp

Abstract: This paper describes a basic idea to verify the
anonymity of timed systems. Even though communication
patterns are indistinguishable, the sender of a message can
be identified by detecting the timing of message emission. In
this paper we describe a timed system with an I/O-automaton-
based formal specification language. By introducing a timer
variable, we need to deal with an infinite-state system. With a
simulation-based proof method for anonymity, we handle the
infinite-state system directly.

Keywords—Timed systems, Anonymity, Verification, Formal Method,
I/O-automaton

1. Introduction
Recently various real-time systems are used on the Internet.
To establish the reliability of timed systems, there have been
many studies based on formal methods that modeled and ver-
ified the correctness of timed systems [1][2]. In this paper we
discuss anonymity, which is an important property with re-
gard to privacy, of timed systems. We say a security protocol
is anonymous if an adversary who can observe all the occur-
rences of events from the protocol cannot determine who is
the “actor” of the events. There are many studies to describe
and verify the anonymity of security protocols formally; for
example, in [3] a proof technique that incorporates theorem-
proving is introduced.

To establish anonymity, we should deal with patterns of
communication such as the number of messages or the exis-
tence/nonexistence of a message. However, even though com-
munication patterns are designed to be indistinguishable, the
sender’s identity may be disclosed by detecting a timing of
message emission. Also, the sender’s identity may be dis-
closed by detecting the occurrence of a timeout. That is, the
detection of timing information may lead to the disclosure of
who is an actor.

In this paper we describe a timed system with an I/O-
automaton-based formal specification language [4]. This
enables us to employ a proof method developed for the
anonymity of untimed systems. By introducing a timer vari-
able, we must deal with an infinite-state system. However,
I/O-automaton theory [5][6] does not assume finiteness of
the number of states or trace length, and it provides a proof
technique called a simulation-based method that can handle
infinite-state systems directly. In this paper we discuss how to
apply a simulation-based method for proving the anonymity
of timed systems.

This paper is organized as follows. We first present a sim-
ple motivating example in Section 2. Then, a timed system
is described in IOA language in Section 3. After showing a
basic idea for proving timed anonymity in Section 4, we have

a discussion in Section 5.

2. Motivating Example: Sending Money
To explain the notion of timed anonymity, we introduce the
following example.

Example 1: There are two people, Alice and Bob. Alice
has $50, while Bob has $10,000. Charlie has requested only
one of them to give him $10. We do not know which person
makes a payment, but one of them actually sends $10.

Figure 1. Automaton GMT

I/O-automaton GMT in Fig. 1 describes the above situation.
Action giveMe10(mem), where mem is Alice or Bob,
is a special action to represent the actor, and pay10 is an
action for a payment. Automaton GMT has the trace set

traces(GMT) =

{
giveMe10(Alice).pay10,
giveMe10(Bob).pay10

}
.

In this case, an adversary who observed the occurrence of
action pay10 cannot determine the preceding action. That
is, both of giveMe10(Alice) and giveMe10(Bob) are
possible, so the adversary never knows who made a payment.
In [3], a system like GMT is called trace anonymous.

In Example 1, Alice possibly pays $10 even though she
has only $50. In the following, we would like to consider a
modified example.

Example 2: Bob has much money ($10,000), so he can
send $10 immediately. But Alice has only $50. When asked
by Charlie, she thinks for a moment before sending $10.

Figure 2. Timed Automaton GMTt

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

129

This is described with a timed automaton in Fig. 2. In this
modeling, Alice who has only $50 may take some time up
to 100 seconds before sending $10. On the other hand, Bob
can make a decision within one second. From this obser-
vation, if the payment of $10 occurs after one second, then
we can see the identity of the sender is Alice. This means
that even though communication patterns are indistinguish-
able, the sender can be identified by detecting the timing of
message emission.

3. Describing Timed Systems in IOA
This section describes a timed system with an (infinite-state)
untimed version of I/O-automaton. With examples in the pre-
vious section, we explain a basic idea of timed anonymity.

IOA [4] is a formal specification language based on I/O-
automaton theory. In IOA, a state is formalized as a tuple of
values. Automaton GMT in Fig. 1 is written as follows.
automaton GMT

signaure
output giveMe10(mem: AorB) % AorB
output pay10 % = { Alice, Bob }

states
money: Nat := 0

transitions
output giveMe10(mem) % This is an actor

pre money = 0 % action.
eff if (mem = Alice) then

money := 50;
else
money := 10000;

fi
output pay10

pre (money = 50 \/ money = 10000)
eff money := money - 10

Here, two actions giveMe10(mem) and pay10 are defined
in a precondition-effect style; action giveMe10(mem) rep-
resents an actor of a computation . If a security protocol has
an anonymous simulation [3], which is a binary relation over
states, then the security protocol is trace anonymous. Actu-
ally, if we define a candidate binary relation asGMT as:

asGMT(s, s
′) ⇐⇒ s.money = s′.money

∨ |s.money− s′.money| = 9950

then the binary relation satisfies the conditions to be an anony-
mous simulation of automaton GMT, where α.β represents the
value of variable β at state α. Moreover, in this paper we in-
troduce special variables:

• timer : a timer variable for elapsing time, and
• timerFlg : a flag variable for activating/deactivating

the timer.
We can define the following automaton GMT2:
automaton GMT2

signaure
output giveMe10(mem: AorB)
output pay10
internal timerDeactivate
states
money: Nat := 0,
timer: Real := 0.0,
timerFlg: Bool := true

transitions
output giveMe10(mem)

pre money = 0 /\ ˜timerFlg

eff if (mem = Alice) then
money := 50;

else
money := 10000;

fi
timerFlg := true

output pay10
pre (money = 50 \/ money = 10000)

/\ ˜timerFlg
eff money := money - 10;

timerFlg := true
internal timerDeactivate % This action is

pre timerFlg % internal and
eff timerFlg := false % does not appear

% in traces.

where we can easily see traces(GMT2) = traces(GMT).
The value of timerFlg should be false if either
giveMe10(mem) or pay10 is enabled, and timerFlg
becomes true if the action is actually fired. Also, action
timerDeactivate, which is called a time action, is en-
abled only if timerFlg is true and it changes the value
of timerFlg to false. This means that a normal ac-
tion and a time action occur alternately. Note that action
timerDeactivate does not change the value of timer
and the time action does not appear in traces since it is inter-
nal.

By modifying GMT2, we can develop Fig. 2’s automaton
GMTt. Specifically, we remove timerDeactivate from
GMT2 and we add the following three actions.

output giveMe10Time
pre timerFlg /\ money = 0
eff timerFlg := false

output pay10Time(t)
pre timerFlg /\ t = timer

/\ (money = 50 \/ money = 10000)
/\ ((money = 50) => (timer <= 100.0))
/\ ((money = 10000) => (timer <= 1.0))

eff timer := 0.0;
timerFlg := false

output elapse(delta)
pre timerFlg /\ delta > 0

/\ (money = 50 \/ money = 10000)
/\ ((money = 50)

=> ((timer <= 100.0)
/\ (timer + delta <= 100.0)))

/\ ((money = 10000)
=> ((timer <= 1.0)

/\ (timer + delta <= 1.0)))
eff timer := timer + delta

Below we classify GMTt’s actions as follows:
• Normal actions (giveMe10(mem) and pay10): ap-

pear in the original automaton GMT; and
• Time actions (giveMe10Time, pay10Time(t) and
elapse(delta)) : are employed for expressing tim-
ing constraints and for elapsing time.

In GMTt, action giveMe10Time and its correspond-
ing normal action giveMe10(mem) have a common
condition “money = 0” in their precondition part.
Also, pay10Time(t) and pay10 have condition
“(money = 50 \/ money = 10000)” in common.
Moreover, actions giveMe10Time and pay10Time(t)
do not rewrite variable money. Hence, after firing
giveMe10Time or pay10Time(t), its corresponding
normal action is enabled. From this observation, we can

130

see that a one-step transition by action pay10 in Fig.
2 is formalized with a two-step transition sequence with
pay10Time(t) and pay10 in IOA language.

Automaton GMTt has another time action,
elapse(delta), and the output action is for elaps-
ing time. The precondition of elapse(delta) defines the
timing constraint at time timer and at time time+delta.

4. Analyzing Anonymity for Timed Systems
This section analyzes the anonymity of timed systems.

4.1 Counterexample for GMTt’s anonymity

Automaton GMTt does not have a trace
giveMe10Time.giveMe10(Bob).

elapse(30).pay10Time(30).pay10

that represents “Bob is asked and he pays $10 af-
ter 30 seconds”; note that Bob must make a pay-
ment in one second. However, GMTt’s corresponding
anonymous system anonym{{Alice,Bob}}(GMTt) has the
above trace; that is, we cannot say traces(GMTt) =
traces(anonym{{Alice,Bob}}(GMTt)). This means that
anonym{{Alice,Bob}}(GMTt)’s anonymity does not lead
to GMTt’s anonymity. Therefore, GMTt is not anonymous.

4.2 Anonymizing GMTt

In this section we modify GMTt. Specifically, we define:
output pay10Time(t)
pre timerFlg /\ t = timer

/\ (money = 50 \/ money = 10000)
/\ ((money = 50) => (timer <= 1.0))
/\ ((money = 10000) => (timer <= 1.0))

eff timer := 0.0;
timerFlg := false

output elapse(delta)
pre timerFlg /\ delta > 0.0

/\ (money = 50 \/ money = 10000)
/\ ((money = 50)

=> ((timer <= 100.0)
/\ (timer + delta <= 1.0)))

/\ ((money = 10000)
=> ((timer <= 1.0)

/\ (timer + delta <= 1.0)))
eff timer := timer + delta

for pay10Time(t) and elapse(delta). That
is, we replace conditions “timer <= 100.0” and
“timer + delta <= 100.0” in pay10Time(t)
and elapse(delta) with “timer <= 1.0” and
“timer + delta <= 1.0”, respectively. We call the re-
sulting automaton GMTt2. This is to assume Alice responds
in one second.

The modified automaton has an anonymous simulation:

asGMTt2(s, s
′) ⇐⇒ asGMT(s, s

′)
∧ s.timer = s′.timer
∧ (s.timerFlg ⇐⇒ s.timerFlg).

This formula contains GMT’s anonymous simulation relation
asGMT. With this relation, we can prove the anonymity of
GMTt2 with the following steps:

1. Find an anonymous simulation for GMT;

2. Then, extend the anonymity result for GMTt2.
In the remainder of this section, we describe why the above
proof is possible.

4.2.1 GMTt2’s initial state’s condition

Let (s, t, p) ∈ start(GMTt2) be an initial state of GMTt2,
where s is a tuple that represents a state of automaton GMT,
t is a value of variable timer, and p is a value of vari-
able timerFlg. From the definition of GMTt2, we have
t = 0.0 and u = true. Clearly, asGMT(s, s) implies
asGMTt2((s, 0.0,true), (s, 0.0,true)).

4.2.2 Step’s correspondence for normal actions

A normal action of GMTt2 can be enabled only if the value
of variable timerFlg is false. If the action is fired, then
variable timerFlg is changed to be true, but timer is
not changed. Hence, we can see that for any normal action a
we have:

• (s1, t, p)
a→GMTt2 (s′1, t, p

′) and
• asGMTt2((s1, t, p), (s2, u, q))

implies
• We have t = u from the definition of asGMTt2;
• We have p = q = false and p′ = true since a is a

normal action; and
• We have asGMT(s1, s2) and s1

a→GMT s′1.
Thus, there exists a state s′2 of GMT such that:

• We have s2
a′

⇒GMT s′2 and asGMT(s
′
1, s

′
2);

• a ∈ {giveMe10(Alice),giveMe10(Bob)} im-
plies a′ ∈ {giveMe10(Alice),giveMe10(Bob)};
and

• a = pay10 implies a′ = a = pay10.
Therefore, for the state (s′2, t,true), we have:

• (s2, u, q) ≡ (s2, t,false)
a′

⇒GMTt2 (s′2, t,true),
and

• asGMTt2((s
′
1, t, p

′), (s′2, t,true)).
Consequently, if binary relation asGMT is an anonymous sim-
ulation, then binary relation asGMTt2 satisfies a step corre-
spondence condition for any normal action.

4.2.3 Step’s correspondence for time actions

If a time action is enabled at a state, then the value
of timerFlg is true. Also, variables timer and
timerFlg can be changed by the time action. Hence, for
any time action b, we have:

• (s1, t, p)
b→GMTt2 (s′1, t

′, p′), and
• asGMTt2((s1, t, p), (s2, u, q))

implies
• s′1 = s1, t = u, and p = q = true holds;
• If b is elapse(delta) then p′ = true; otherwise,

p′ = false; and
• asGMT(s1, s2) holds.

If we can prove

(s2, u, q) ≡ (s2, t,true)
b⇒GMTt2 (s2, t

′, p′)

for state (s2, t
′, p′), then asGMTt2((s1, t

′, p′), (s2, t
′, p′))

holds. Hence, asGMTt2 satisfies the conditions to be an
anonymous simulation of GMTt2 for action b.

131

4.3 Further analysis for GMTt2

We consider the transition

(s1, t, p) ≡ (s1, t,true)
b→GMTt2 (s1, t

′, p′) ≡ (s′1, t
′, p′)

shown in the previous section and a transition
(s2, t,true)

b→GMTt2 (s2, u
′, q′) by time action b.

From the definition of each time action, we have u′ = t′ and
q′ = p′. Moreover, the condition sequence

(s2, u, q) ≡ (s2, t,true)
b⇒GMTt2 (s2, t

′, p′)

is actually a one-step transition

(s2, u, q) ≡ (s2, t,true)
b→GMTt2 (s2, t

′, p′)

since GMTt2 does not have any internal actions. Hence, for
GMTt2, we can prove the anonymity by proving:

For any GMTt2’s time action b and any states s1, s2
with asGMT(s1, s2), if action b is enabled at state
(s1, t, p) then b is also enabled at (s2, u, q).

Specifically, it suffices to show the following three formulae
with a theorem proving tool [7], where enabled(s, a) is
true if action a is enabled at state s:

(as(s1, s2) /\ enabled(s1, giveMe10Time))
=> enabled(s2, giveMe10Time),

(as(s1, s2) /\ enabled(s1, pay10Time(t)))
=> enabled(s2, pay10Time(t))

and

(as(s1, s2) /\ enabled(s1, elapse(delta)))
=> enabled(s2, elapse(delta)).

5. Discussion
In this study, we described a timed system as an infinite-state
system with a conventional I/O-automaton, and we applied
the proof method for anonymity [3] directly. As another ap-
proach, it seems possible to redefine the anonymity proof
technique of [3][10] in timed automaton [8] or in timed I/O-
automaton [9]. In this section we compare the approaches.

Timed automaton models are designed for dealing with
timing features of computation; so, several constraints are
introduced to verify timing properties properly. For exam-
ple, an execution sequence where only time actions occur
infinitely often and normal actions do not occur is regarded
as unfair, and unfair execution sequences are usually prohib-
ited. However, for anonymity verification we may not need
such a condition; even though there is an unfair execution se-
quence by actor Alice in a security protocol, we can discuss
the anonymity if the security protocol has another correspond-
ing execution sequence by actor Bob.

The untimed I/O-automaton model does not support such
conditions, but it has various verification tools and proof
methods, and we can use them to prove anonymity. This as an
advantage of using untimed I/O-automaton theory. However,
in our approach we should introduce a parameter for real-
valued times; that is, we must handle infinite-state systems.

We can overcome this problem since I/O-automaton theory
[5][6] does not assume finiteness of the number of states or
trace length, and simulation-based proof techniques are ap-
plicable to prove the trace inclusion of infinite-state systems.

We compared the both approaches, and in this study we
employed a formal specification language based on conven-
tional I/O-automaton theory. The main reason is that various
verification tools are available.

6. Conclusion
This paper discussed a method to verify the anonymity of
timed systems. By describing a timed system with an I/O-
automaton-based formal specification language, a proof tech-
nique for anonymity of untimed systems can be applied to a
timed system.

This paper has shown a basic idea to prove the anonymity
of timed systems with a small example. It is a future work to
deal with a larger example such as Mixnet [11].

Acknowledgment
This study is supported by the Grant-in-Aid for Scientific Re-
search (C), No.26330166, of the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

References

[1] K. van Hee and N. Sidorova, “The Right Timing: Re-
flections on the Modeling and Analysis of Time”, PETRI
NETS 2013, LNCS 7927, pp.1-20, Springer, 2013.

[2] M. Wehrle and S. Kupferschmid, “Mcta: Heuristics and
Search for Timed Systems”, FORMAT 2012, LNCS 7595,
pp.252-266, Springer, 2012.

[3] Y. Kawabe, K. Mano, H. Sakurada and Y. Tsukada,
“Theorem-proving anonymity of infinite-state systems”.
Inf. Proc. Lett., vol. 101, no. 1, pp. 46–51, 2007.

[4] A. Bogdanov, “Formal verification of simulations be-
tween I/O-automata”, Master’s thesis, MIT, 2000.

[5] N. A. Lynch and F. Vaandrager, “Forward and back-
ward simulations — part I: Untimed systems”. Inform. and
Comput., Vol. 121, No. 2, pp. 214-233, 1995.

[6] N. A. Lynch, Distributed algorithms, Morgan Kaufmann
Publishers, 1996.

[7] J. F. Soegaard-Andersen, S. J. Garland, J. V. Guttag, N. A.
Lynch, and A. Pogosyants. “Computer-assisted simulation
proofs”. In CAV ’93, LNCS 697, pp. 305-319. Springer-
Verlag, 1993.

[8] R. Alur and D. Dill, “A theory of timed automata”. TCS,
Vol. 126, pp. 183-235, 1994.

[9] D. Kaynar et.al, “The Theory of Timed I/O Automata”.
Synthesis Lectures on Computer Science, Morgan Clay-
pool Publishers, 2010.

[10] I. Hasuo, Y. Kawabe and H. Sakurada, “Probabilistic
anonymity via coalgebraic simulations”. TCS, Vol. 411,
No. 22-24, pp. 2239-2259, 2010.

[11] D. L. Chaum, “Untraceable electronic mail, return ad-
dresses, and digital pseudonyms”. CACM, Vol. 24, No. 2,
pp. 84-90, 1981.

132

